Unlike fossil-fueled generation, solar energy resources are geographically distributed and highly intermittent, which makes their direct control difficult and requires storage units. The goal of this research is to develop a flexible capacity planning tool, which will allow us to obtain a most economical mixture of capacities from solar generation as well as storage while meeting reliability requirements against fluctuating demand and weather conditions. The tool is based on hybrid (system dynamics and agent-based models) simulation and meta-heuristic optimization.