Academic articles

Agent-Based Simulation Modeling of a Bus Rapid Transit (BRT) Station Using Smart Card Data


A Bus Rapid Transit (BRT) station with multiple loading zones tends to have a longer passenger-bus interface and, thus, lead to longer passenger walking times and longer bus dwell times than ordinary bus stops. As a way to reduce bus dwell times in a BRT station, this study focuses on eliminating delays in passengers’ reaction to their desired bus by designing an improved passenger information system (PIS) that can increase passengers’ certainty about the bus stopping location. This study develops an agent-based simulation model based on observations from a BRT station in Brisbane, Australia to reflect a real BRT operations and passenger flows. The input parameters for the simulation model are calibrated with actual data including smart card records, field measurements, and video recordings. After mapping passenger moving and waiting patterns, and allocation logic of bus loading areas, various what-if analyses can be performed to design better passenger information systems.

Modeling and Simulation of Port-Of-Entry Systems


This paper describes a suite of simulation models for Port-of-Entry systems, dubbed POESS (POE Simulation System). Port-of-Entry Simulation System was developed with the support of the U.S. Department of Homeland Security (DHS) for use primarily by the U.S. Customs and Border Protection (CBP) agency. Port-of-Entry Simulation System aims to assist CBP in Port-of-Entry design and operational decision making. A Port-of-Entry Simulation System simulation model of the Bridge of the Americas (BOTA) POE, located at El Paso, Texas, is described as an example.

Simulation of The Order Process in Maritime Hinterland Transportation: The Impact of Order Release Times


The integration of information systems between the various actors organizing and executing the transport of containers to seaports is slowly progressing. Transport orders are frequently characterized by high change rates causing high manual revision effort for dispatchers. Therefore, these order changes, often received shortly before the day of departure, raise the question regarding the immediate transmission of transport orders to the subsequent actors in the transport chain. This paper analyzes the impact of different order release times, which define the timing of order transmission, on order process efficiency (processing times and costs) using a multi-method simulation approach. In a case study, four actors, two focusing on transport planning and two on operative transport execution, are considered. The simulation experiments with varying order release times and change rates reveal: A late release of orders from planning to operative actors and a reduction of order changes can significantly increase order process efficiency.

Increasing capacity utilization of shuttle trains in intermodal transport by investing in transshipment technologies for non-cranable semi-trailers


For shuttle trains with a fixed transport capacity which are the dominant operating form in intermodal transport, increasing capacity utilization is of crucial importance due to the low marginal costs of transporting an additional loading unit. Hence, offering rail-based transport services for non-cranable semi-trailers can result in additional earnings for railway companies. However, these earnings have to compensate for the investment costs of the technology. Based on a dynamic investment calculation, this paper presents a simulation model to evaluate the economic profitability of transshipment technologies for non-cranable semi-trailers from the railway company’s perspective. The results depend on the capacity utilization risk faced by the railway company. In particular, if the railway company does not sell all the train capacity to freight forwarders or intermodal operators on a long-term basis, investing in technology for the transshipment of non-cranable semi-trailers can be economically profitable.

A simulation approach for multi-stage supply chain optimization to analyze real world transportation effects


The cost effective management of a supply chain under stochastic influences, e.g. in demand or the replenishment lead time, is a critical issue. In this paper a multi-stage and multi-product supply chain is investigated where each member uses the (s,Q)-policy for inventory management. A bi-objective optimization problem to minimize overall supply chain costs while maximizing service level for retailers is studied. Optimal parameter levels for reorder points and lot sizes are evaluated. In a first step a streamlined analytical solution approach is tested to identify optimal parameter settings. For real applications, this approach neglects the dynamics and interdependencies of the supply chain members. Therefore a simulation-based approach, combining an evolutionary algorithm with simulation, is used for the optimization. The simulation-based approach further enables the modelling of additional real world transportation constraints. The numerical simulation study highlights the potential of simulation-based optimization compared to analytical models for multi-stage multi-product supply chains.

A combined discrete-continuous simulation model for analyzing train-pedestrian interactions


Computer simulation has defined itself as a reliable method for the analysis of stochastic and dynamic complex systems in both academic and practical applications. This is largely attributed to the advent and evolution of several simulation taxonomies, such as, Discrete Event Simulation, Continuous Simulation, System Dynamics, Agent-Based Modeling, and hybrid approaches, e.g., combined discrete-continuous simulation, etc. Each of these simulation methods works best for certain types of problems. In this paper, a discrete-continuous simulation approach is described for studying train and pedestrian traffic interactions for purposes of decision support. A practical operations problem related to commodity train operation within two small towns in Alberta, Canada, is then used to demonstrate the implementation of the approach within the Simphony.NET simulation system. Simulation results generated are presented.

A Simulation-Based Investigation of Freight Transportation Policy Planning and Supply Chains


Regional freight transportation policy planning is a difficult task, as few policy-planners have adequate tools to aid their understanding of how various policy formulations affect this complex, socio-technical system. In this paper, we develop a proof-of-concept model to simulate the impacts of public policies on freight transportation in a simulated region. We use the techniques of multi-disciplinary system design and optimization to analyze the formulation of regional freight transportation policies and examine the relative effects of policies and exogenous forces on the region in order to provide insight into the policy-planning process. Both single objective and multi-objective analysis is performed to provide policy-planners with a clear understanding of the trade-offs made in policy formulation.

Distributed Simulation of Hybrid Systems with HLA Support


As engineers are confronted with designing increasingly complex systems composed of interconnected components of diverse nature, traditional methods of modeling and analysis become cumbersome and inefficient. In the paper we discuss one of the approaches to modeling and distributed simulation of hybrid (discrete/continuous) systems. We use hybrid state machines, where sets of algebraic-differential equations are assigned to states, to model complex interdependencies between discrete and continuous time behaviors. This framework is fully supported by UML-RT/Java tool AnyLogic developed at Experimental Object Technologies. We use High Level Architecture (HLA), a defacto standard for distributed simulation, as a communication and synchronization media for distributed hybrid simulation components. Integration of simulations developed with AnyLogic into HLA is considered.

The Urban Dynamics Educational Simulator: Tutorial for a Tool to Teach Agent-Based and Land Use and Transport Interactions Modeling


This paper describes a simple educational simulation tool to teach about agent-based modeling (ABM) and land use and transportation (LUT) interactions in urbanized regions. The relationship between land use and transportation in urban areas shows a dynamic complexity which is difficult to model with static or very aggregated approaches. Agent-based simulation is becoming a standard to model certain complex systems including LUT interactions. The LUT modeling with Agent-Based simulation has been evolving over the last 20 years and there are some complete models being applied to real metropolitan areas. In this paper, only some of the ingredients of those models are presented in an easy to explain agent-based model that can be used in classes.

Dynamic Recovery Policies for Time-Critical Supply Chains under Conditions of Ripple Effect


We consider time critical supply chains in the Australia dairy industry and re-covery policies in the presence of the ripple effect. Ripple effect is the impact of a dis-ruption on supply chain economic performance and disruption-based scope of changes needed in the supply structures and parameters to preserve the resilience. First, we de-scribe the ripple effect in general and one example of the ripple effect in the dairy supply chain in Australia. Second, we present a model for reactive recovery policies in the dairy supply chain under conditions of the ripple effect and exemplify them on a simulation example. The results of this study can be used in future for comparing proactive and re-active approaches to tackling the ripple effect from resilience and flexibility views.