Academic articles

A Discrete Event Simulation Model to Test Multimodal Strategies for a Greener and More Resilient Wood Supply in Austria

Increasing occurrence of natural disturbances such as windstorms and high snow cover as well as uncer-tainty according to queuing and lead times, bottlenecks, utilization, stock level, wagon and truck availability and machine breakdowns lead to supply chain risks and seasonal irregularities in wood harvest and transport. Innovative multimodal systems via rail terminals offer the potential to increase buffer capacity and reduce greenhouse gas emissions. Therefore, a train terminal is included in a new virtual environment spanning the whole wood supply chain and enabling manager involvement in testing, analysis and evalua-tion of a complex multimodal transport system. The simulation model facilitates carrying out experiments and scenario designs for strategy comparisons in workshops with supply chain managers and provides in-tuitive decision support by animation and a KPI-cockpit. Adapting collaborative supply chain control strat-egies in participatory simulation enhances the development of advanced risk management and therefore improves supply chain resilience, efficiency and sustainability.

Simulation of a Coal Lading Port

This case study considers the simulation of a coal lading port in order to determine which extensions are needed based on expected capacity demands. These investigations are executed in cooperation with the German company TAKRAF GmbH which planned and constructed the considered port. Processes at this port are influenced by uncertainties, like the provided coal mix from mines and transportation times from mines to the port or meteorological disturbances. The maximum capacity of the current state of the port was determined at a first step. Components which mainly limit the maximum outcome were identified. Based on these results, different extension scenarios were evaluated.

Flexibility as an Enabler for Carbon Dioxide Reduction in a Global Supply Chain: a Case Study From the Semiconductor Industry

Due to the significant rise in environmental awareness of companies and customers for the past few years, research on how to optimize business with respect to carbon dioxide (CO2) emission has gained more attention and importance. This paper investigates how flexibility can be an enabler for CO2 reduction over a global production network especially in a capital intensive and high volatile market like the semiconductor one. We tested this hypothesis with discrete-event simulation experiments based on a case study obtained from a semiconductor company. The study indicates that global supply chains (SCs), like those in the semiconductor industry, should be equipped with a certain level of flexibility to cope with demand volatility if the CO2 burden due to transportation is low compared to those due to manufacturing. This flexibility provides ecological benefits to companies in reducing the carbon footprint of their products.

Dynamic Price and Lead Time Quotation Under Semiconductor Industry Related Challenges

We consider the dynamic price and lead time quotation problem in the practical context of the semiconductor industry. Our model considers an inventory decoupled supply chain and accounts for a limited capacity, stochastic demand and processing times and quote-sensitive customers. We focus on performance evaluation under two decision making strategies. The first is lead time based pricing (LTBP). It follows a sequential approach where the firm decides first on the lead time quote (manufacturing) and then quotes the price under the given lead time (marketing). The second strategy suggests determining the lead time and the price quotes simultaneously. From the practical view-point, it is interesting to first understand the system performance under LTBP and then look for the ways to realize it. Based on our numerical results, we elaborate on the effect of LTBP on the key performance indicators and discuss conditions for close performance to a simultaneous decision strategy.

Strategic Supply Chain Design for an Austrian Winter Road Service Provider

Snowplow operations are critical for public safety and economic success in countries where difficult driving conditions occur in winter. Specifically, the salt supply ensuring good driving conditions is a crucial factor. In this paper, the strategic supply chain design of a winter service provider in Austria is investigated. Two research directions on the influence of bigger and fewer salt silos per depot and the logistic costs for a unique summer salt purchasing strategy are addressed applying two independent solution approaches. On the same data basis, a simulation model is developed and a mixed integer linear problem is applied to answer the respective research questions.

How Order Placement Influences Resource Allocation and Order Processing Times Inside a Multi-user Warehouse

This paper focuses on the influence of different order placement behavior of users on the allocation of common resources inside a multi-user warehouse. Furthermore, the interdependencies between one user’s resource usage on other users’ order processing time is investigated. For this objective, an agent-based simulation model has been developed, depicting a rectangular warehouse with two users and one order picker. Results show that different order placement behavior and resource usage of one user have a strong influence on order processing times of other users. Furthermore, by simulating uneven order placement by one user, it can be shown that peaks in order demand influence other user’s order processing times with a delay of up to two hours after the peak occurred. Thus, the results highlight the need for coordinated order placement of partners inside a multi-user warehouse.

Simulation-based Evaluation of Urban Consolidation Centers Considering Urban Access Regulations

The negative effects of urban freight transports, such as air quality problems, road congestion, and noise emissions lead in many cities to major difficulties. A widely studied measure to reduce these negative effects are Urban Consolidation Centers (UCCs), which aim to bundle freight flows to reduce the number of urban freight transports. However, many projects showed that the additional costs of UCCs often made it unattractive for carriers to participate in such schemes. This paper presents an agent-based simulation to assess the impact of urban access regulations on the cost-attractiveness of UCCs for carriers. A case study inspired by the Frankfurt Rhine-Main area is presented to compare deliveries of a group of carriers with and without a Urban Consolidation Center under various urban access scenarios. The simulation shows that regulations increase the cost-attractiveness of UCCs for carriers to varying degrees while increasing the overall traffic volume.

Simulation-based Headway Optimization for a Subway Network: a Performance Comparison of Population-based Algorithms

This study presents simulation-based optimization for the Viennese subway system. The underlying discrete event simulation model has several stochastic elements like time-dependent demand and turning maneuver times, direction-dependent vehicle travel and passenger travel as well as transfer times. Passenger creation is a Poisson process which uses hourly origin-destination-matrices based on mobile phone data. The number of waiting passengers on platforms and within vehicles are subject to capacity restrictions. As a microscopic element, passenger distribution along platforms and within vehicles is considered. There are trade-offs between service quality (e.g. waiting time) and costs (e.g. fleet mileage). This bi-objective optimization problem is transformed into a single-objective one by normalization and scalarization. The goal is to find optimal time-dependent headways. Computational experience is gained from 48 test instances which are based on real-world data. Several population-based evolutionary algorithms were applied. The covariance matrix adaptation evolution strategy (CMA-ES) performed best.

An Agent-based Simulation Framework for Supply Chain Disruptions and Facility Fortification

Fortifying facilities within a supply chain network can mitigate facility failures caused by disruptions. In this study we build an agent-based simulation model to study the r-interdiction median problem with fortification (RIMF), considering two types of facility disruptions: naturally-caused and human-caused disruptions. The objective of this study is to develop a simulation model that analyzes facility disruption and fortification as a repeated Stackelberg competition, where fortification decisions are made anticipating disruptions.

Agent-Based Simulation Modeling of a Bus Rapid Transit (BRT) Station Using Smart Card Data

A Bus Rapid Transit (BRT) station with multiple loading zones tends to have a longer passenger-bus interface and, thus, lead to longer passenger walking times and longer bus dwell times than ordinary bus stops. As a way to reduce bus dwell times in a BRT station, this study focuses on eliminating delays in passengers’ reaction to their desired bus by designing an improved passenger information system (PIS) that can increase passengers’ certainty about the bus stopping location. This study develops an agent-based simulation model based on observations from a BRT station in Brisbane, Australia to reflect a real BRT operations and passenger flows. The input parameters for the simulation model are calibrated with actual data including smart card records, field measurements, and video recordings. After mapping passenger moving and waiting patterns, and allocation logic of bus loading areas, various what-if analyses can be performed to design better passenger information systems.