Academic articles

Agent-Based Modeling and Simulation of Multidimensional Impacts of Construction Labor Productivity Factors


Despite numerous attempts to quantify the impacts of factors influencing productivity in the construction industry, such factors are still perceived as static and independent, resulting in unrealistic productivity estimates. Two generic agent-based models were built to simulate the outcomes of a project through varying levels of detail, each investigating a certain set of impacts. Findings proved the accuracy of the proposed comprehensive approach in estimating durations compared to planned durations and to those obtained from the traditional approach.

A Tutorial on How to Set Up a System Dynamics Simulation on the Example of Covid-19 Pandemic


The Covid-19 virus has substantially transformed many aspects of life, impacted industries, and revolutionized supply chains all over the world. System dynamics modeling can aid in predicting future outcomes of the pandemic and generate key learnings. This tutorial describes how the system dynamics simulation model was constructed for the Covid-19 pandemic using AnyLogic Software. The model serves as a general foundation for further epidemiological simulations and system dynamics modeling.

A Simulation-Optimization Model for Automated Parcel Lockers Network Design in Urban Scenarios in Pamplona (Spain), Zakopane, and Krakow (Poland)


The constant rise of e-commerce coupled with extremely fast deliveries is a significant contributor to saturate city centers’ mobility. To address this issue, the development of a convenient Automated Parcel Lockers (APLs) network improves last-mile distribution by reducing the number of transportation vehicles, the distances driven, and the delivery stops. An agent-based model was implemented in the current paper to forecast parcel demand placed on APLs based on socio-economic factors.

An Agent-Based Simulation Model to Mitigate the Bullwhip Effect via Information Sharing and Risk Pooling


The bullwhip effect, a phenomenon of progressively larger distortion of demands across a supply chain, can cause chaos and disorder with amplified supply and demand misalignment. An agent-based simulation model was developed to evaluate how risk pooling and information sharing between distinct entities in a supply chain can reduce the bullwhip effects. In agent-based paradigm different components of a system were described as agents which interact with each other in an environment.

Simulation-Based Order Management for the Animal Feed Industry


This article presents a simulation model for feed supply networks consisting of a number of customers, retailers, and manufacturers which are agents and placed on Geographic Information System (GIS) map. The simulation model proposed a fuzzy-based decision strategy for customers to decide when to order specific products. The AnyLogic model described a possible decision strategy for retailers to optimize their transport routes by selecting viable manufacturers.

Applying Simulation to Estimate Waiting Times and Optimize the Booking Size for Oversea Transportation Vessels


This study investigates a different source of uncertainty, which is the waiting time for the next vessel that is scheduled on a specific route, connecting two international ports. The aim of this research was to determine the booking size for vessels in oversea delivery to minimize transportation costs. The simulation model and all the respective processes included in the oversea supply chain were developed in AnyLogic with a discrete-event paradigm.

Effect of Real-Time Truck Arrival Information on the Resilience of Slot Management Systems


This paper considers a loading facility that uses Truck Appointment System (TAS) for slot management and faces incoming truck arrival uncertainty due to traffic congestion. The researchers developed an integer mathematical model to represent the adaptive behavior that determines the optimal reschedules by minimizing the average truck waiting time. The model was aimed to emulate the adaptive system. It was created in AnyLogic simulation software based on the conceptual model.

A Simulation-Heuristic Approach to Optimally Design Drone Delivery Systems in Rural Areas


Commercial companies are looking at drones as a viable source of package transportation. Many supply chains have started to experiment with drone delivery systems and simulation modeling helps with such investigations a lot. The developers modeled the drone delivery problem with agent-based simulation and optimized the locations of drone depots and charging stations.

A Software Library for Agent-Based Modeling and Simulation of Active Shooting Events


Active shooting events are, unfortunately, a common situation. To help civilians, first responders, and governments better understand how to deal with these, a model was developed to simulate such incidents. In addition, the Purdue Institute of Homeland Security built a library to make future models simpler to develop.