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ABSTRACT

In this paper, we simulate allocation policies for a two-stage inventory system that receives perfect
advance demand information (ADI) from customers belonging to different demand classes. Demands
for each customer class are generated by independent Poisson processes while the processing times are
deterministic. All customers in the same class have the same demand lead time (the difference between
the due date and the requested date) and back-ordering costs. Each stage in the inventory system follows
order-base-stock-policies where the replenishment order is issued upon arrival of a customer order. The
problem requires a fast and reliable method that determines the system performance under different policies
and ADI. Thus, we employ discrete event simulation to obtain output parameters such as inventory costs, fill
rates, waiting time, and order allocation times. A numerical analysis is conducted to identify a reasonable
policy to use in this type of system.

1 INTRODUCTION

Advances in information technology in recent years, such as enterprise resource planning (ERP) and
electronic data exchange (EDI), have enabled supply chain partners to collaborate and improve operational
efficiencies. One type of information that helps to meet the ever-increasing customer demand at reduced
costs is the information related to customers’ future requirements known as Advance Demand Information
(ADI). Customers place their orders with a due-date. The difference between the order arrival date and the
due-date is called the demand lead time. Additionally, studies have shown that the integration of ADI with
base-stock-type control policies leads to significant improvement in efficiencies (Karaesmen et al. 2002).

Conventional systems without ADI use the standard allocation method, i.e., first-come-first-served
(FCFS). In these systems, the customer expects the items to be delivered immediately upon placing an
order. On the contrary, in the presence of ADI, the order placement and delivery dates do not coincide. While
applying the FCFS principle in this case, it is essential to determine when the products must be allocated
for a specific customer. Note that the terms “reservation” and “allocation” are used interchangeably. The
allocation policy translates into the prioritization of customer orders and represents a time-based reservation.
Time plays a key role in the allocation. An allocation made too early or too late means incorrect prioritization
and additional back-ordering costs due to delays. In this study, FCFS is considered as the general allocation
policy where the products are allocated as soon as the order is placed. We further analyze policies such
as priority allocation, allocation deadline, level rationing and last-minute allocation policies.

The primary motivation behind this study is the increased information sharing between supply chain
companies. Moreover, it is important for companies to satisfy the demand of all their customers with
specified contractual agreements. This research can benefit many companies in the automotive, high-tech,
and apparel industries. We can consider the case of the Faurecia Group, one of the world’s leading
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automotive suppliers, as an example of a supplier that manages its production based on the ADI provided
by its customers such as PSA, Renault, BMW, and Toyota. The major challenge, in this case, was to
know the optimal date and the level of stock to begin the production. The research presented in this paper
considers two key issues: i) Inventory systems with ADI and ii) Allocation policies. A brief review of the
relevant studies in these areas is given in Sections 1.1 and 1.2.

1.1 Inventory Systems with ADI

The work of Hariharan and Zipkin (1995) is one of the first papers to incorporate ADI into inventory
management. Chen (2001) considers a serial inventory system with delivery due dates and uses a last-
minute allocation policy. Liberopoulos (2008) investigates the trade-off between finished-goods inventory
and advance demand information for a model of a single-stage make-to-stock supplier. They model the
supply process as M/M/1, M/D/1 and M/D/∞ queues to find the optimal order-base-stock level.

Our study can benefit manufacturing companies using ADI. Gilbert and Ballou (1999) study a steel
distribution facility that handles its inventory by determining a portion of its demand as ADI. They provide
an estimation of the cost savings associated with various levels of ADI. Another application field for our
problem/model are spare part inventory systems that serve multiple classes of demands. Koçağa and Şen
(2007) model such a system with two classes of demands: one with demands that are due immediately
and another with ADI.

Further, the literature on ADI can also be based on early fulfilment. Karaesmen et al. (2004) consider a
single-stage make-to-stock system for one class of demand where early delivery is allowed. Sarkar (2007)
allows early fulfilment for a system with multiple demand classes as an alternative strategy for ADI. Further,
Wang and Toktay (2008), in their work, delay the fulfilment decision until the end of the period, thus
proving that increasing demand lead time is more beneficial than reducing supply lead time when early
fulfilment is possible. Available to Promise (ATP) is an alternative to ADI that addresses order fulfilment
problems. Kilger and Meyr (2008) have proposed an ATP search method to allocate orders to customers.
Meyr (2009) further proposes ATP allocation for different customer classes with the basic idea that ATP
is held back in anticipation of later arriving, more profitable orders even if a less profitable order already
requests the product stock.

1.2 Allocation Policies

Marklund (2006) introduces the idea of employing a reservation policy at the upper-level echelon. The
policies analyzed were complete reservation policy where the reservations are made based on an FCFS
basis at the time the order is placed (as early as possible) and last-minute allocation policy, in which
reservations are made at the time when the order is to be shipped (as late as possible).

Chen and Samroengraja (2000) study two allocation policies: the past priority allocation (PPA) where
back-ordered units are allocated on an FCFS strategy; and the current priority allocation policy (CPA),
where the allocation of current, as well as backlogged orders, is made at the last minute to avoid earmarking
of the inventories. According to their numerical study, the CPA policy performs better on average; however,
it does not dominate the PPA policy.

Further, when considering conventional systems without ADI but with heterogeneous demand, some of
the literature, worth mentioning, is as follows: Topkis (1968) shows that the optimal policy has a particular
threshold structure that reserves items in stock for future (uncertain) demands of more valuable customers.
Frank et al. (2003) analyze the rationing problem for two classes of customers where the demands of the
first class must be completely satisfied, but the demands of the second class can be partially satisfied.

The remainder of this paper is organized as follows: In Section 2, we introduce the notations and
analyze the model. We introduce the different allocation policies used in the model in Section 3. The
simulation model is presented in Section 4. In Section 5, we summarize the results of the numerical
analysis. Finally, we present our conclusions and suggest future research directions in Section 6.
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2 PROBLEM CONTEXT

2.1 Inventory Model

We consider a two-stage serial inventory system with ADI serving a single product to two customer classes,
as illustrated in Figure 1. Similar to the model considered by Hariharan and Zipkin (1995), we consider
that both the stages use order base-stock policies to replenish their inventory. This policy works like a
conventional one-for-one replenishment policy, except that replenishment orders are triggered by customer
orders instead of actual demands. When a customer order occurs at stage 2, a replenishment order is
placed for stage 1. Stage 1 replenishes its inventory from an uncapacitated supplier. The lead time for
these replenishments, L1, is constant. The transportation lead time from stage 1 to stage 2, L2, is also
constant. However, the replenishment lead time for stage 2 is stochastic due to possible stockouts at stage
1. All customers of class j have a demand lead time LD j (time from a customer order until the associated
customer demand is realised). LD = 1

λ

∑2
j=1 λ jLD j, denotes the average demand lead-time.

1 2∞

∼ Poisson(λ1),LD1

∼ Poisson(λ2),LD2

L1 L2

Figure 1: Two-stage serial system with two demand classes.

2.2 Model Assumptions

We consider the following assumptions. The order in each customer class follows an independent Poisson
process, and the arrival rate for class j is λ j arrivals per time unit. Let λ = λ1 +λ2, be the total arrival
rate. We assume perfect ADI, i.e., each customer order includes a due date and, once placed, cannot be
revised. It is assumed that the customers will not accept early deliveries. Every arriving demand is for
one unit, and all unfulfilled demands are back-ordered. There are no economies of scale, so there is no
incentive for batch orders. Customer’s preferences for demand lead-times are outside the control of the
inventory system. Further, the allocation decision is final, i.e., an allocated item cannot be used to fulfil
another order.

2.3 Model Analysis

Figure 2 illustrates the sequence of events. Every order has an exact due date given by LD j for customer
class j, and there are three cases to consider:

1. When LD j ≥ L1 + L2, all demands can be met while holding no inventory at either stage, i.e.,
replenishment order for stage 1 is delayed until L1 +L2 before the due date (no early fulfilment).

2. Suppose L2 ≤ LD j < L1 +L2, then, there is no need to hold stock at stage 2. Thus, this system can
be considered as a single-stage system.

3. When LD j < L2 < L1 +L2, we have a conventional two-stage serial inventory system.

Based on this observation, we will consider cases with LDj < L1 +L2 throughout the study. Let hi be
the inventory holding cost rate at stage i and b be the back-order cost at stage 2. We assume 0≤ h1 ≤ h2.
Note that if h1 > h2, then the item should be kept at stage 2 to reduce costs. Further, if the customer classes
have different back-ordering costs, the average back-order cost at stage 2 will be b = 1

λ

∑2
j=1 λ jb j. The

average delay from the receipt of an order until allocation is LA j ≥ 0, and a customer j placing an order
at time t with demand lead-time LD j will have an item allocated from inventory at t +LA j.
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Figure 2: Sequence of events for L2 < LD < L1 +L2.

Let si be the local base stock level at stage i. Assuming that each stage starts with inventory si and
an empty supply system, then, each customer order at stage 2 triggers a replenishment order for stage 1.
Stage 2 monitors its inventory position and places orders with stage 1, similar to a single location operating
with a base stock policy. This situation is analogous for stage 1, which subsequently treats the incoming
orders as its demand. Thus, every stage experiences its own demand process. For t ≥ 0, we define:

• Ii(t): local inventory at stage i
• Bi(t): local back-orders at stage i
• INi(t): local net inventory at stage i = Ii(t)−Bi(t)
• IOi(t): inventory on order at stage i
• IPi(t): local inventory order-position at stage i = INi(t)+ IOi(t) = Ii(t)−Bi(t)+ IOi(t)
• ITi(t): inventory in transit to stage i
• D(t1, t2]: cumulative customer demand from time t1 through time t2, t1 < t2
• D−(t1, t2]: cumulative customer orders from time t1 through time t2, t1 < t2

From the above definition, we have IOi(t)− ITi(t) = Bi−1(t). We assume that the outside source
immediately responds to the orders from stage 1, thus, IT1(t) = IO1(t) =⇒ B0(t) = 0. Further, IPi(t) =
INi(t)+ IOi(t) is non-stationary over time and thus, we cannot define IPi(t) = si, ∀t > 0. So, we define a
modified inventory position IP−i (t) = IPi(t)−D(t, t+LD]. This modified inventory depends on the demand
during the length of the demand lead time. From this, it can be implied that IP−i (t) has a stationary behavior
over time and IP−i (t) = si. Based on this information, the inventory system can be evaluated following the
conservation-of-flow law.

For stage 2, when LD ≥ L2, exactly IO2(t) demands will be realized in the time interval (t, t +LD].
The net inventory at stage 2 is

IN2(t +LD) = IN2(t)+ IT2(t)−D(t, t +LD] = IP2(t)−B1(t)−D(t, t +LD]

= IP−2 (t)−B1(t) = s2−B1(t).

Suppose, LD < L2, in this case no ADI is provided to stage 1. Then, the net inventory at stage 2 is

IN2(t +L2) = IN2(t)+ IT2(t)−D(t, t +L2] = IN2(t)+ IO2(t)−B1(t)− (D(t, t +LD]+D(t +LD, t +L2])

= IP−2 (t)−B1(t)−D−(t, t +L2−LD] = s2−B1(t)−D−(t, t +L2−LD].

Thus, the difference in the above two equations is the customer order during the time interval (t, t+L2−LD].
So, we define, D2(t) = number of customer orders at stage 2 in the time interval (t, t +(L2−LD)+] i.e.,
D2(t)∼ Poisson(λ (L2−LD)+)). For LD < L1 +L2, we evaluate the inventory level of stage 1 as

IN1(t +L1 +L2) = IN1(t)+ IT1(t)−D(t, t +L1 +L2] = IP1(t)− (D(t, t +LD]+D(t +LD, t +L1 +L2]).

Now, if LD≥ L2,

IN1(t +L1 +L2) = IP1(t)−D(t, t +LD]−D(t +LD, t +L1 +L2]

= IP−1 (t)−D−(t, t +L1 +L2−LD] = s1−D−(t, t +L1 +L2−LD].
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When LD < L2,

IN1(t +L1 +L2) = IP1(t)−D(t, t +LD]−D(t +LD, t +L2]−D(t +L2, t +L1 +L2]

= s1−D−(t, t +L2−LD]−D−(t +L2−LD, t +L1 +L2−LD].

Again, the inventory level at stage 1 depends on the customer orders during the time interval (t, t +
(L2 − LD)+]. Hence, we define D1(t) = number of customer orders at stage 1 in the time interval
(t, t +L1 +L2−LD− (L2−LD)+] i.e., D1(t)∼ Poisson(λ (L1− (LD−L2)

+)).
By omitting the time index to describe the model in equilibrium, we generalize the equations as below.

INi = si−Bi−1−Di (1)

Bi = [Bi−1 +Di− si]
+ = [−INi]

+ (2)

Thus, the evaluation of this two-stage series system can be verified by an equivalent conventional system
as proposed by Hariharan and Zipkin (1995) and Marklund (2006) using leadtimes shown in equation (3).

L′2 = [L2−LD]+, L′1 = [L1 +L2−LD]+−L′2 (3)

2.4 Performance Measures

To evaluate the total average costs for FCFS, we consider the average values: b, (LD) and λ . A conventional
two-stage serial system incurs the following total average cost (TC).

E[
2∑

i=1

hi(Ii + ITi+1)+bBi] (4)

where E[ITi] = λL′i is the number of units sent to stage i′s supply system per unit time which stay there
for time L′i. The difference between the two-stage series system with ADI and the conventional system
is that the former has a longer stage-2 lead time, its average in-transit inventory is larger by the constant
value λLD which incurs the stage-1 holding cost. Thus, the system defined in this paper incurs additional
costs of h1λLD (Hariharan and Zipkin 1995). We employ Two-Moment Approximation procedure (Graves
1985) to determine B2, alternatively to numerical convolution of B1 and D2.

A key performance measure that plays an important role in the multi-customer problem is the fill rate.
We define β j as fill rate, the expected proportion of class- j demands met directly from stock. Thus, for
L2 ≤ LD < L1 +L2, the fill rate is given by P(I1 > 0) = P(D1 = S1−1) as I1 = 0 when D1 ≥ s1. Here, we
define L j1 as the stage 1 lead time of the equivalent conventional system for customer class j. Since D1
is Poisson-distributed with mean λL′j1 = λ (L1− (LD j−L2)

+) and the distribution of a Poisson random
variable X with mean Λ is P{X = x}= Λx

x! e−Λ, we obtain the fill rate for customer class j as

β j = P(D1 < s1) = e−λL′j1
s1−1∑
n=0

λL′j1
n!

. (5)

We consider another service measure: the expected waiting time until demand is fulfilled. This measure,
mean waiting time, denoted by Wj for customer class j can be calculated using Little’s law. For an average
waiting time W and arrival rate λ , the average queue length is given by L = λW . In our model, backorders
form the queue length. Hence, the aggregate mean waiting time will be W = E[B2]/λ .

3 ALLOCATION POLICIES

The main focus of this paper is to understand the performance of the model under different allocation
strategies and to address the question when would it be ideal to allocate or reserve the item. Different
policies (P) and allocation criteria are further explained in this section.
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P = 0: First-Come-First-Served: Usually, this policy is considered the best when the customer classes
have the same back-ordering costs and demand lead times, i.e., equal priorities. In this policy, both customer
orders as well as back-orders are satisfied in the order of their arrival irrespective of the customer priorities.

P = 1: Priority Allocation: We evaluate this policy with two priority options: (1) customer class
with the highest back-ordering cost; (2) customer with the shortest demand lead time. When the on-hand
inventory at stage 1 is IOH1 > 0, the demands are satisfied according to the FCFS strategy regardless of
the customer class. In the presence of back-orders, the items arriving from the supplier to stage 1 are first
allocated to the priority class and then to the non-priority class.

P = 2: Allocation Deadline Policy: Allocation deadline for any customer class is the difference
between demand lead time and actual lead time. Customers are sorted in ascending order of their allocation
deadlines. Both the arriving orders and the back-orders are allocated on arrival in the order of their deadlines.

P = 3: Inventory Rationing Policy: Assuming class 1 is the priority class and z is the threshold stock
level, arriving demand of class 2 is satisfied if the IOH1 ≥ z; otherwise, only the demand of class 1 is
satisfied. In the presence of back-orders, the item is allocated to class 2 if IOH1 ≥ z and class 2 has the
highest back-ordering cost; otherwise, the item is reserved for class 1. Thus, orders from both the classes
are satisfied when IOH1 ≥ z; otherwise, only class 1 orders are satisfied.

P = 4: Last-minute Allocation: Allocation is delayed until L2 time units before the arrival of the
actual demand. As illustrated in Figure 3, P4 delay is the difference between the actual lead time and
the time spent in the system so far i.e., P4 = (LD j−L2−Time spent in the system). However, under this
policy, the allocation occurs according to FCFS, but after P4 time units.

New 
Customer 

Order Arrival

Determine:
1. Policy (P)
2. Parameters

FCFS 
Queue: 

Accumulate 
Orders

P = 0 ?

P = 1 or 2 ? IOH1 = 0 ?

Set Priority

Alt 
Queue: 

Accumulate 
Backorders

IOH1 < z ?P = 3 ?

P = 4 ? P4 Delay

Yes

Yes

No

Yes
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No

Yes

No
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Fulfill Orders
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End
Due Date 
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Figure 3: Flow of process.
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4 SIMULATION MODEL

It is time-consuming to evaluate analytically different policies with various parameters. Thus, we employ
discrete event simulation, which enables a dynamic change in the demand pattern and the model parameters.
We have implemented the simulation model and its parameters in AnyLogic Simulation Modeling Software.
To represent a realistic situation such as Assemble-to-Order, Buy-to-Order or Make-to-Order with a due
date, we consider stage 1 as the Customer Order Decoupling Point which starts assembling or producing
for L2 time units with ample capacity and keeps the finished goods at stage 2. The stock at stage 1 buffers
against the customer orders while we keep zero stock at stage 2.

4.1 Input Parameters

The input parameters (λ j, b j, LD j, Li , si ∀ stage i and customer class j) defined in Section 2 are used
in the simulation model. In addition, we introduce a new notation pw j to represent the customer order
priority. The higher the weight (pw j), the higher the priority.

4.2 Process Flow

The process flow is illustrated in Figure 3. The events that occur in the simulation are: (1) At the beginning,
the inventory level of stage 1 is set to s1 while we stock nothing at stage 2 (s2 = 0); (2) Statistics are
initialized to record the output parameters; (3) Upon generation of a customer order, a replenishment order
for stage 1 is triggered which takes L1 time to reach stage 1 and updates on-hand inventory at stage 1
(IOH1). Simultaneously, the customer order is queued up in an FCFS queue or the alternative queue based
on the policy; (4) The order seizes an item from the inventory and moves to stage 2 with a delay of L2.
There is a reservation delay which delays the order at stage 1 such that the items reach stage 2 only on the
due date. However, this delay is set to zero for the FCFS base model; (5) Once the items arrive at stage 2,
they are released out of the system only on the due date, and until then they wait at stage 2; (6) Various
performance measures are recorded during the simulation.

4.3 Output Parameters

The output parameters are tabulated in Table 1. Similar to back-ordering costs and demand lead time, the
average of waiting times of different customer classes is calculated as WT = 1

λ

∑2
j=1 λ jWTj.

Table 1: Output parameters of the simulation model.

Output Parameters Collected at Description Notation

Avg Back-ordering Costs End of period Total number of orders present in the system that have
surpassed the due date * bi

BC

Avg Holding Costs End of period (IOH1 × h1) + (items between stage 1 and 2 × h1) +
(items in stage 2 × h2)

HC

Total Costs End of period BC+HC TC

per
Customer
class j

Avg Fill Rate Order exits stage 2 number of orders fulfilled within due date
Total number of orders FR j

Avg Allocation Lead Time Order exits stage 1 Allocation Time - Order Generated Time AL j

Avg Waiting Time Order exits stage 2 Exit Time at stage 2 - Order Generated Time - LDi WTj

Avg Reservation Delay Order exits stage 1 Shipment start time to stage 2 - Allocation Time RTj

4.4 Model Validation

The model run parameters for all the experiments are: a) Each period is equal to one day; b) The run
length is set at 2 years, to represent a typical business operating cycle; c) The number of replications is set
to 40 with random seed values and the variance obtained during the pilot runs was considered acceptable.
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Table 2: Simulation and analytical results under FCFS policy, ± is based on 95% C.I.

# (λ1,λ2) (b1,b2) (LD1,LD2) (L1,L2) (h1,h2) (s1,s2)
TC FR1 FR2 WT

Analy. Sim. Analy. Sim. Analy. Sim. Analy. Sim.

1 (1,1) (10,10) (5,5) (5,3) (2,2.5) (5,0) 36.155 37.454±0.707 0.285 0.27±0.013 0.285 0.28±0.014 0.757 0.751±0.023
2 (0.4,0.6) (10,10) (5,5) (5,3) (2,2.5) (5,0) 15.615 15.965±0.191 0.815 0.794±0.01 0.815 0.79±0.01 0.135 0.129±0.009
3 (1,1) (10,10) (4,6) (5,3) (2,2.5) (5,0) 36.155 39.984±0.511 0.100 0.111±0.005 0.629 0.602±0.008 0.757 0.868±0.014
4 (0.4,0.6) (10,10) (4,6) (5,3) (2,2.5) (5,0) 15.810 16.9±0.217 0.629 0.623±0.012 0.947 0.907±0.005 0.121 0.172±0.009
5 (0.4,0.6) (5,10) (5,5) (5,3) (2,2.5) (5,0) 15.346 15.138±0.164 0.815 0.789±0.011 0.815 0.782±0.009 0.135 0.138±0.008
6 (0.4,0.6) (5,10) (3,3) (5,3) (2,2.5) (5,0) 14.763 17.683±0.386 0.440 0.43±0.013 0.440 0.438±0.012 0.876 0.867±0.031
7 (0.4,0.6) (5,10) (12,10) (5,3) (2,2.5) (5,0) 27.549 28.055±0.248 1.000 0.958±0.004 1.000 0.956±0.003 0.000 0.000
8 (0.4,0.6) (5,10) (4,6) (5,3) (2,2.5) (3,0) 16.413 17.776±0.222 0.238 0.243±0.01 0.677 0.646±0.009 0.561 0.661±0.016
9 (0.4,0.6) (5,10) (7,8) (5,6) (2,2.5) (5,0) 20.625 20.797±0.254 0.629 0.613±0.016 0.815 0.787±0.009 0.222 0.236±0.012

10 (0.4,0.6) (5,10) (7,8) (10,3) (2,2.5) (5,0) 25.527 23.409±0.413 0.285 0.27±0.012 0.440 0.402±0.013 1.113 1.131±0.037

To validate the simulation model, we vary the input parameters for the FCFS policy (pw1 = pw2).
Furthermore, we calculate 95% confidence intervals for the means of the selected performance measures.
Table 2 shows a close agreement between the simulated and analytical results for the cases considered.
We make the following observations. We set different cases to obtain the conformity of the model. Cases
3 and 4 are special cases of 1 and 2 with different demand lead times. Case 2 is modified in terms of
penalty cost to get case 5. We also check for three cases of demand lead times: Cases 1 through 5 for
L1 +L2 > LD > L2, case 6 for LD = L2 and case 7 for LD > L1 +L2. Stock level s1 in case 4 is decreased
to 3 and verified in case 8. Finally, from cases 9 and 10, it can be inferred that an increase in L1 has a
more significant influence on the model than that of L2.

5 NUMERICAL ANALYSIS

This section investigates the performances of allocation policies for the model in Section 4. Further, we
seek answers to the following questions: Which system parameters affect the average cost the most? How
does early fulfilment play a role in the system? How do the policies affect customer service levels?

5.1 Performance of the Allocation Policies

Our first set of results demonstrates the performance of the model under different allocation policies using
the problem data in Table 3. Here, early fulfilment is not permitted, i.e., the items wait at stage 2, if the
customer demand for the corresponding order has not arrived.

Table 3: Input data for allocation policy analysis.

Parameter (λ1,λ2) (b1,b2) (LD1,LD2) (L1,L2) (h1,h2) (s1,s2) (pw1, pw2)

Value (0.8, 1.2) (20, 10) (7, 9) (10, 3) (3, 5) (10, 0) (10, 1)

From the plots in Figure 4, we make several observations. First, the average costs incurred under the
policy 4 is the least since the items wait at stage 1 and h1 < h2. Second, we observe from Figure 4(b)
that the fill rates are higher for prioritized customers under P = 1,3 and customers with the shortest LD
under P = 2. Third, policy 4 dominates all the policies in terms of waiting time. Finally, the allocation
lead time for policy 0 is, on average, 5 time units after order arrival. Another interesting observation is
that the allocation lead times under policy 4, LA1 = 4.532 and LA2 = 6.529, give the same difference as
(LD1,LD2) = (7,9). As expected, LA1 < LA2 under policies 1, 2 and 3 due to customer class 1 prioritization.

The assumption that early fulfilment is forbidden is not realistic in all scenarios. Nowadays, early
fulfilment is appreciated, which would lead to a reduction in holding costs. For the test case in Table 3,
when the early fulfilment is permitted, we observe a significant decrease in costs as the item does not incur
the holding costs at stage 2. Last-minute allocation policy would not perform differently since it always
delays allocation by DueDate−L2 time at stage 1. The costs are reported in Table 4.

In Section 4.3, we introduced reservation time delay. After allocation of an item, the item is re-
served/delayed at stage 1 until L2 time units to the due date. So far, RT was zero. With early fulfilment
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(a) Average Costs (b) Average Fill Rate

(c) Average Waiting Time (d) Average Allocation Lead Time

Figure 4: Simulation results under different allocation policies (early fulfilment forbidden).

forbidden and reservation delay initiated, we can decrease costs. If early fulfilment is forbidden, then the
introduction of a reservation delay would prove to be a beneficial option.

To obtain a near-optimal stock level for stage 1, we perform an enumeration by varying s1 from 0 to
30 and record the costs at the end of each iteration. The simulation run for each policy stops when the
minimum cost value is reached and records the corresponding s1 value in that iteration. From Table 4,
we observe that the near-optimal stock value increases when early fulfilment is permitted. This is to be
expected since s1 is primarily a contributor to the costs.

Table 4: Near-optimal values of s1 obtained for test case in Table 3.

Early Fulfillment
P = 0 P = 1 P = 2 P = 3 P = 4

s1 Cost s1 Cost s1 Cost s1 Cost s1 Cost

No 12 57.884 13 60.091 14 60.312 14 60.297 13 33.996
Yes 19 29.806 19 29.667 19 29.679 19 29.729 13 33.765

5.2 Sensitivity Analysis

The results in Section 5.1 suggest that there is a trade-off between system costs and fill rates. In this
section, we perform a sensitivity analysis to understand the impact of system parameters on performance
measures. We use the data in Table 3 with (s1,s2) = (12,0) and vary one parameter at a time to observe
its effect.

5.2.1 Effect of Arrival Rate

We vary arrival rates for both the customer classes from 0.25 to 2. We noted that under the FCFS policy
(P = 0), WT1 > WT2 even when λ1 < λ2 possibly because LD2 > LD1, giving the system more time to
process orders from customer class 2. As expected, under policies 1, 2, and 3, priority class had shorter
waiting times. When the total arrival rate doubles, policies 0 through 3 show a drastic decrease in the fill
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rates. However, under policy 4, both customer classes have equal waiting times and a gradual decrease in
fill rates.

5.2.2 Effect of Customer Priority

Policies 1, 2, and 3, thus far, provided similar results since pw1 > pw2. Here, we evaluate scenarios:
CP1: Priority to Class 1; CP2: Priority to Class 2; CP3: Equal priority to both classes. The CP2 scenario
indicates the worst case, while the scenarios with CP1 indicate the best case concerning the costs. Average
costs are shown in Figure 5(a). The significant increase in cost for CP2 is seen for policies 1 and 3 due to
the non-prioritization of Class 1, which has a higher back-ordering cost and prioritization of Class 1 which
has a higher arrival rate but a longer LD. Little difference is found between CP1 and CP3. It is obvious to
say that prioritization is suitable for classes with higher back ordering costs than that with higher arrival
rate.

(a) Average costs vs. customer class priority. (b) Average costs vs demand lead time.

Figure 5: Effect of customer class priority and demand lead time on average costs.

5.2.3 Effect of Demand Lead time

The demand lead time is incremented from 0 to 15 and LD = LD j, ∀ j = 1,2 with pw2 > pw1. First, we
analyze the costs of the different policies for varying lead times. Since the demand lead time is the same for
both the customer classes, the allocation deadlines would be equal. Thus, policy 2 acts as FCFS. Similarly,
policy 1 and policy 3 give the same results, as shown in Figure 5(b). Policy 4 dominates the other policies
when LD > L1 +L2 as the orders incur holding costs of stage 1 while orders under other policies wait at
stage 2 incurring higher holding costs. In general, all the policies incur higher costs when LD < L2, i.e.,
when no ADI is available. Costs decrease as the demand lead time increases. However, at some point for
the policies, the costs start increasing as the items are held at either stage 1 or stage 2 until the due date.

(a) FR1 vs. LD (b) FR2 vs. LD

Figure 6: Effect of demand lead time on fill rates.
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Both the customer classes have the same fill rates under policies 0, 2, and 4. In Figures 6(a) and 6(b),
we observe a left shift in FR2 as class 2 customers are prioritized. Thus, considering fill rates, policies 1
and 3 dominate the other policies. It is evident that as the demand lead time increases, fill rates increase
for both the customer classes, thus proving investment in ADI beneficial. Mean waiting times are vertical
reflection of fill rate plots, i.e. they reach zero when LD = max(L1,L2) under policies 0, 2, and 4.

(a) AL1 vs. LD (b) AL2 vs. LD

Figure 7: Effect of demand lead time on allocation lead time.

The allocation lead time (AL) also shows an interesting output with different demand lead times in
Figure 7. Policies 0 and 2 allocate an item after 4 time units of order arrival irrespective of the demand
lead time. Under policies 1 and 3, AL2 < AL1 as customer class 2 has a higher priority. As expected, under
policy 4, AL increases with LD when LD > L2. Finally, we analyze the effect of demand lead time on
the optimal stock level (s∗1). The graph in Figure 8 indicates that for all the policies, s∗1 decreases as LD
increases. We expected that stock level goes to zero when LD = L1 +L2 and this occurs under policy 0,
2, and 4. However, the priority-based policies (1 and 3) show a higher base-stock level s1 > 0 even when
LD > L1 +L2.

Figure 8: Near-optimal base stock level s∗1 for different demand lead times.

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, we used simulation experiments to investigate the performance of a two-stage serial system
with ADI and two customer classes. We verified the model analytically and studied the impact of several
input parameters on the performance measures. Based on numerical analyses, we infer that the last-minute
allocation policy (P=4) is cost-effective in all the situations. However, this is suitable for companies that
operate with lower service levels. When it comes to prioritization, customers with highest back-orders
should be prioritized rather than the ones with shorter demand lead time. This consideration holds for both
priority allocation (P=1) and level-rationing (P=3). If tardiness is an important performance criterion, then
the allocation deadline policy (P=2) performs best while maintaining the desired fill rates. The simulation
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model developed offers a reliable and efficient method to deal with the dynamic environment faced by a
firm and remodel the operations in terms of customer service and operating costs.

It might be interesting to see how the policy parameters change when different types of ADIs (Thonemann
2002) are used. Further, the model can be scaled to more than two demand classes. The challenge is to
calculate the policy parameters for this divergent problem analytically; but, the simulation model can be
used to solve the problem. Furthermore, the model can be extended to capacitated production-inventory
problems or periodic-review systems. Time of allocation can be considered as a decision variable to study
how the system performs under different allocation lead times. These improvements will provide more
insights for a company to fulfil its business objectives.
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