Modeling and Optimization of Wells Scheduling for In-Situ Oil Production

Stream Systems Ltd

AnyLogic Conference 2015

Philadelphia, PA

Context - Oil Sands

- Oil Sands: Natural mixture of sand + oil + water + others
- > 3 main countries
- > In-Situ
- Capex: 34 billion CAD in 2014
- High operational cost
- In-Situ production > 1.3m bpd

In-Situ Technology

Steam-Assisted Gravity Drainage (SAGD)

Oil Sands Reservoir

- Applying heat (steam) to oil reservoirs beneath the earth's surface to warm the bitumen so it can be pumped to the surface through recovery wells.
- Two common types of in-situ petroleum production: SAGD & CSS

Systemic View

Complexity

Surface & Subsurface data/models separately

- Methodological approach
 - No integrated approach
 - ⋄ Spreadsheets, lots of it!
 - No variability/scenario analysis

High Complexity!

Modeling Approach

Close the Loops Above to Below Ground and Back

Why AnyLogic

- Agent-Based and Discrete Event Approach
- Fluids Library
- Easy to integrate with external data sources
- High Performance
- External Java libraries to manage additional calculations

Engine

Data Management

VARIABLE FLOW

120

WELLS

6 CURVES

70PARAMETERS

14
VARIABLES

Emulsion Flow Mergers and Splits

100 MERGERS & SPLITS

260
OTHER COMPONENTS

24
HOURS

Rate	Ratio	Cumulative	Quality	Report

Production Summary

Water Limit (M m3/day) Steam to Water Ratio

Number of Wells per Pad Number of Pads

Recycling Factor CPF Steam capacity (M m3/Day)

	Parameter	Actual	Target	Difference
Oil	Cum. (M m3)	62.04	62.04	0 0%
	Rate (M m3/Day)	0.62	0.62	0 0%
Water	Cum. (M m3)	79.77	79.77	0 0%
	Rate (M m3/Day)	0.78	0.78	0 0%
Gas	Cum. (MM m3)	1.88	1.88	0 0%
	Rate (MM m3/Day)	0.02	0.02	0 0%

CPF	Summary
0	ounning y

	Rate (M m3/Day)	Cum (M m3)
Steam	1.49	155.26
Water from Wells	0.78	79.77
Required Water	1.49	155.26
Makeup Water	0.79	26.99
Non-Supplied Water	0	0

Project Name:		
Company Name:		Print Report
Reported By:		
Date:	yyyy mm dd	

Quality Index (ppm)

Actual	Target	Difference	
1,530	1,530	0	0%
242	242	0	0%
639	639	0	0%
982	982	0	0%
150	150	0	0%
16	16	0	0%
	1,530 242 639 982 150	1,530 1,530 242 242 639 639 982 982 150 150	1,530 1,530 0 242 242 0 639 639 0 982 982 0 150 150 0

OY 2M 28D x10 →

Advantages of the Approach

- Dynamic populations
- ♦ Fluid modeling
- Tracking of all batches in the model
- Quality calculations
- Advanced decision algorithms
 - ♦ Scheduling
 - ♦ Backward calculations
 - **Optimization**
 - ♦ Reliability
- Multiple scenario analysis

- Systemic Approach
- Deal with Complexity
- Ripple and Timing Effects
- Experimentation Platform

Team of Collaborators

- Manoochehr Akhlaghnia, PhD.
- Alistair Wright, PhD.
- Dumitru Cernelev, P.Eng, MBA.
- Birgit Juergensen, Dipl.Ing.Oec
- ♦ Alvaro Gil, M.Sc.
- Industrial Partners

Q&A Session

Thanks for your attention