Ilya Grigoryev

Anylogic®
in three days

A quick course in simulation modeling

Sixth edition

2024
Preface

The first practical textbook on AnyLogic from AnyLogic developers. AnyLogic is the unique simulation software tool that supports three simulation modeling methods: system dynamics, discrete event, and agent-based modeling and allows you to create multi-method models.

The book is structured around four examples: a model of a consumer market, an epidemic model, a model of a small job shop, and an airport model. We also give some theory on different modeling methods.

You can consider this book as your first guide in studying AnyLogic. Having read this book and completed the exercises, you will be able to create discrete-event and pedestrian models using process flowcharts, to draw stock and flow diagrams, and to build simple agent-based models.

About the sixth edition

If you are familiar with the fifth edition of AnyLogic in Three Days, here are the main changes:

In the sixth edition:

- The storage management logic is updated: new Storage, Store and Retrieve elements are used to simulate the storage in the Job Shop exercise.

In the fifth edition:

- The parameter variation experiment in the SEIR model is conducted in AnyLogic Cloud.

- All the examples, instructions and screenshots have been updated to conform to the latest version of the software, AnyLogic 8.7.

- Compare runs experiment in the Market model is excluded.

In the fourth edition:

- All the examples, instructions and screenshots have been updated to conform to the latest version of the software, AnyLogic 8.

In the third edition:

- Data import from an external Excel file into the built-in AnyLogic database is described in the last phase of the airport model.
In the second edition:

- A new discrete event job shop model has been included in the book.

About the author

Ilya Grigoryev is Head of Training Services at The AnyLogic Company, a company specializing in simulation consulting and developing simulation software - AnyLogic.

Ilya Grigoryev is the author of AnyLogic documentation and AnyLogic training courses. He has presented numerous public trainings in U.S., Europe, Africa and Asia. Ilya Grigoryev has been a simulation consultant to several organizations. He has been working at The AnyLogic Company for twenty years and knows almost everything about simulation and AnyLogic.

Acknowledgements

I would like to thank:

Edward Engel for his kind help in writing the book.

All AnyLogic team leaders who made my time in AnyLogic development team enjoyable: Alexei Filippov, Vasiliy Baranov, George Meringov, and Nikolay Churkov.

Timofey Popkov and George Gonzalez-Rivas for the idea to publish this book.

Andrei Borshchev for his contributions to the book.

My good friends for their positive energy: Tatiana Gomzina, Alena Beloshapko, Evgeniy Zakrevsky, Vladimir Koltchanov, Clemens Dempers and Derek Magilton.

Vitaliy Sapounov for his advice and support.

Ilya V. Grigoryev
Contents

Contents..5
Modeling and simulation modeling..7
Agent-based modeling ..15
 Market model...18
 Phase 1. Creating the agent population..18
 Phase 2. Defining a consumer behavior..36
 Phase 3. Adding a chart to visualize the model output...47
 Phase 4. Adding word of mouth effect...59
 Phase 5. Considering product discards...65
 Phase 6. Considering delivery time..68
 Phase 7. Simulating consumer impatience...74
 Phase 8. Comparing model runs with different parameter values..86
System Dynamics modeling..94
 SEIR model..96
 Phase 1. Creating a stock and flow diagram...96
 Phase 2. Adding a plot to visualize dynamics...107
 Phase 3. Parameter variation experiment ...112
 Phase 4. Calibration experiment...120
Discrete event modeling with AnyLogic...128
 Job Shop model...130
 Phase 1. Creating a simple model..130
 Phase 2. Adding resources...147
 Phase 3. Creating 3D animation..155
 Phase 4. Modeling pallet delivery by trucks..168
Pedestrian modeling...188
 Airport model..189
Phase 1. Defining the simple pedestrian flow ... 190
Phase 2. Drawing 3D animation ... 200
Phase 3. Adding security checkpoints .. 205
Phase 4. Adding check-in facilities .. 212
Phase 5. Defining the boarding logic .. 222
Phase 6. Setting up flights from MS Excel spreadsheet .. 230
References ... 247
Index ... 249
Modeling and simulation modeling

Modeling is a way we can solve real-world problems. In many cases, we cannot afford to experiment with real objects to find the right solutions: building, destroying, and making changes may be too expensive, dangerous, or just impossible. If that is the case, we can build a model that uses a modeling language to represent the real system. This process assumes abstraction: we include the details we believe are important and leave aside those we think are not important. The model is always less complex than the original system.

- The model-building phases - mapping the real world to the world of models, choosing the abstraction level, and choosing the modeling language - are all less formal than the process of using models to solve problems. It’s still more an art than a science.
After we have built the model – and sometimes even as we build it – we can start to explore and understand our system's structure and behavior, test how it will behave under a variety of conditions, play and compare scenarios, and optimize. After we find our solution, we can map it to the real world.

- **Modeling is about finding the way from the problem to its solution through a risk-free world where we can make mistakes, undo things, go back in time, and start over again.**

Types of models

There are many types of models, including the mental models we all use to understand how things work in the real world: friends, family, colleagues, car drivers, the town where we live, the things that we buy, the economy, sports, and politics. All our decisions - what we should say to our child, what we should eat for breakfast, who we should vote for, or where we should take our girlfriend to dinner - are all based on mental models.

Computers are powerful modeling tools, and they offer us a flexible virtual world where we can create nearly anything imaginable. Of course, there are many types of computer models, from basic spreadsheets that allow anyone to model expenses to complex simulation modeling tools that help experienced users explore dynamic systems such as consumer markets and battlefields.

Analytical vs. simulation modeling

Ask a major organization's strategic planning, sales forecasting, logistics, marketing, or project management teams to name their favorite modeling tool, and you will quickly find Microsoft Excel is the most popular answer. Excel has several advantages: it is widely available, it is very easy to use, and it allows you to add scripts to your formulas as your spreadsheet's logic becomes increasingly sophisticated.
Analytical model (Excel spreadsheet)

The technology behind spreadsheet-based modeling is simple: you enter the data inputs in some cells, and you view the data outputs in others. Formulas – and in more complex models, scripts – link the input and output values. Various add-ons allow you to perform parameter variation, Monte Carlo, or optimization experiments.

However, there is also a large class of problems where the analytic (formula-based) solution is either hard to find or simply doesn’t exist. This class includes dynamic systems that feature:

- Non-linear behavior;
- "Memory";
- Non-intuitive influences between variables;
- Time and causal dependencies;
- All above combined with uncertainty and a large number of parameters.

In most cases, it is impossible to obtain the right formulas, much less put together a mental model of such a system.

Consider a problem that requires you to optimize a rail or truck fleet. It is difficult to use an Excel spreadsheet to manage factors such as travel schedules, loading and unloading times, delivery time restrictions, and terminal point capacities. A vehicle’s availability at a given location, date, and time depends on a sequence of preceding events, and determining where to send the vehicle when it is idle requires us to analyze future event sequences.
Formulas that are good at expressing static dependencies between variables typically do not do well in describing systems with dynamic behavior. It is why we use another modeling technology - simulation modeling - to analyze dynamic systems.

A simulation model is always an executable model: running it builds you a trajectory of the system's state changes. Think of a simulation model as a set of rules that tell you how to move from a system's current state to a future state. The rules can take many forms, including differential equations, statecharts, process flowcharts, and schedules. The model's outputs are produced and observed as the model runs.

Simulation modeling requires special software tools that use simulation-specific languages. While you will need training to do simulation modeling well, your time and effort are rewarded when your model offers a high-quality analysis of a dynamic system.

Many people - especially those who know Microsoft Excel well or who have programming experience - try to use a spreadsheet to model a dynamic system. As they try to capture more and more detail, they inevitably start reproducing the functionality of Excel's simulators. The resulting models are slow and unmanageable, and they are usually thrown away quickly.

It’s virtually impossible to capture any of those details in an analytic solution. Even if there were formulas to guide your configuration, even a small process change could void them, and you would need a professional mathematician to fix them.

Advantages of simulation modeling

Simulation modeling has six key advantages:

1. Simulation models allow you to analyze systems and find solutions where methods such as analytic calculations and linear programming fail.

2. Once you have chosen an abstraction level, it is easier to develop a simulation model than an analytical model. It typically requires less thought, and the development process is scalable, incremental, and modular.

3. A simulation model’s structure naturally reflects the system’s structure.

4. In a simulation model, you can measure values and track entities within the level of abstraction, and you can add measurements and statistical analysis at any time.
5. The ability to play and animate the system behavior in time is one of simulation’s great advantages. You will find animation useful for demonstrations, verification, and debugging.

6. Simulation models are far more convincing than Excel spreadsheets. If you use a simulation to support your proposal, you will have a major advantage over those who only use numbers.

Applications of simulation modeling

Simulation modeling has accumulated many success stories in a wide and diverse range of application areas. As new modeling methods and technologies emerge and computer power grows, you can expect simulation modeling to enter an ever-larger number of areas.

Applications of simulation

The figure above shows several simulation applications, all sorted by the abstraction level of the corresponding models.

At the bottom are the physical-level models that use highly detailed representations of real-world objects. At this level, we care about physical interaction, dimensions, velocities, distances, and timings. An automobile’s anti-lock brakes, the evacuation of football fans from a stadium, the traffic at an
intersection controlled by a traffic light, and soldiers’ actions on the battlefield are examples of problems that require low abstraction modeling.

The models at the top are highly abstract, and they typically use aggregates such as consumer populations and employment statistics rather than individual objects. Since their objects interact at a high level, they can help us understand relationships - such as how the money our company spends on advertising influences our sales - without requiring us to model intermediate steps.

Other models have an intermediate abstraction level. If we model a hospital’s emergency department, we may care about physical space if we want to know how long it takes for someone to walk from the emergency room to an x-ray station, but the physical interaction among people in the building is irrelevant because we assume the building is uncongested.

In a model of a business process or a call center, we can model operations’ sequence and duration rather than their location. In a transportation model, we carefully consider truck or rail car speed, but in a higher-level supply chain model, we simply assume an order takes between seven and ten days to arrive.

- **Choosing the right abstraction level is critical to your modeling project’s success, but you will find it is reasonably easy once you have decided what you want to include and what will remain below the level of abstraction.**

- **In the model development process, it is normal - even desirable - to occasionally reconsider the model’s abstraction level. In most cases, you will start at a high abstraction level and add details as you need them.**

The three methods in simulation modeling

Modern simulation modeling uses three methods: discrete event, agent-based, and system dynamics.
Methods in simulation modeling

In simulation modeling, a method is a framework we use to map a real-world system to its model. You can think of a method as a type of language or a sort of "terms and conditions" for model building. There are three methods:

- **System Dynamics**
- **Discrete Event Modeling**
- **Agent-Based Modeling**

Each method serves a specific range of abstraction levels. System dynamics assumes very high abstraction, and it is typically used for strategic modeling. Discrete event modeling supports medium and medium-low abstraction. In the middle are agent-based models, which can vary from very detailed models where agents represent physical objects to the highly abstract models where agents represent competing companies or governments.

You should always select your method after you have carefully considered the system you want to model and your goals. In the figure below, the modeler’s problem will largely determine how they model a supermarket. They could build a process flowchart where customers are entities and employees are resources, an agent-based model where consumers are agents who are affected by advertising, communication, and their interactions with agents and employees, or a feedback...
structure where sales are in the loop with ads, quality of service, pricing, and customer loyalty.

You may also find that the best way to model the different parts of a system is to use different methods, and in these situations a multi-method model will best meet your needs (Borshchev, 2013).
Agent-based modeling

Agent-based modeling is a relatively new method compared to system dynamics and discrete event modeling. In fact, agent-based modeling was largely an academic topic until simulation practitioners began using it some 15 years ago.

It was triggered by:

- A desire to gain deeper insights into systems that traditional modeling approaches do not capture well;
- Advances in modeling technology made possible by computer science, such as object-oriented modeling, UML, and statecharts;
- The rapid growth of CPU power and memory. Agent-based models are more demanding than system dynamics and discrete event models.

Agent-based modeling offers a modeler another way to look at the system:

- You may not know how a system behaves, be able to identify its key variables and their dependencies, or recognize a process flow, but you may have insights into how the system’s objects behave. If that is the case, you can start building your model by identifying the objects (agents) and defining their behaviors. Afterward, you may connect the agents you have created and allow them to interact or put them in an environment which has its own dynamics. The system’s global behavior emerges from many (tens, hundreds, thousands, millions) concurrent individual behaviors.

There is no standard language for agent-based modeling, and an agent-based model’s structure comes from graphical editors or scripts. There are many ways to specify an agent’s behavior. Frequently agent has a notion of state, and its actions and reactions depend on the state; then behavior is best defined with statecharts. Sometimes behavior is defined in rules executed upon special events.

In many cases, the best way to capture the agent’s internal dynamics is to use system dynamics or a discrete event approach, and then place a stock and flow diagram or a process flowchart inside an agent. Similarly, outside agents the dynamics of the environment where they live is often naturally modeled using traditional methods. It is why many agent-based models are multi-method models.
Agents in an agent-based model may represent very diverse things: vehicles, units of equipment, projects, products, ideas, organizations, investments, pieces of land, people in different roles, etc.

People in different roles: consumers, citizens, employees, patients, doctors, clients, soldiers, ...

Equipment, vehicles: trucks, cars, cranes, aircrafts, rail cars, machines, ...

Non-material things: projects, products, innovations, ideas, investments ...

Organizations: companies, political parties, countries, ...

Academics still debate which properties an object should have to be an “agent”: proactive and reactive qualities, a spatial awareness, an ability to learn, social ability, “intellect”, etc. In applied agent-based modeling, however, you will find all kinds of agents: some communicate while others live in total isolation, some live in a space while others live without a space, and some learn and adapt while others never change their behavior patterns.

Here are some useful facts to ensure you are not misguided by academic literature or the various theories of agent-based modeling:

- **Agents are not cellular automata.** Agents do not have to live in discrete space (like the grid in The Game of Life, ("The Game of Life", n.d.)), and space is not part of many agent-based models. When you need to represent space, it is typically continuous such as a geographical map or a facility floor plan.

- **Agents are not necessarily people.** Anything can be an agent: a vehicle, a piece of equipment, a project, an idea, an organization, or even an investment. A model of a steel converter plant where each machine is modeled as an agent and their interactions produce steel is an agent-based model.

- **An object that seems to be passive can be an agent.** You could model a single pipe segment in a larger water supply network as an agent and then associate maintenance and replacement schedules, costs, and breakdown events with it.
• **An agent-based model can have many or few agents.** The model can also have one or many types of agents.

• **There are agent-based models where agents do not interact.**
 Health economics, as an example, uses alcohol use, obesity, and chronic disease models where individual dynamics depend only on personal parameters and, sometimes, on the environment.
Market model

We will build an agent-based model of a consumer market – one where each consumer will be an agent – to help us understand how a product enters the market. Since human decisions always include stochastics, agent-based modeling is ideal for modeling market simulations.

Let’s assume the following:

- The model includes 5000 people who do not use the product, but a combination of advertising and word of mouth will eventually lead them to purchase it.

Phase 1. Creating the agent population

We will start by creating a simple model that depicts how advertising leads consumers to purchase our product.

Our model’s consumers will not use the product at first, but they are all potentially interested in using it. We will also represent advertising’s influence on consumer demand by allowing a specific percentage of them to become interested in purchasing the product during a given day. For our purposes, Advertising effectiveness = 0.1 determines the percentage of potential users that become ready to buy the product during a given day.

Download AnyLogic Personal Edition (PLE) from www.anylogic.com and install it. AnyLogic PLE does not require activation, so you are ready to start creating your first AnyLogic model.

Start AnyLogic and the Welcome page displays.

The Welcome page introduces you to AnyLogic, offers a helpful overview of the program and its features, and allows you to open the example models.
Welcome page

1. Close the Welcome page and create a new model by selecting File > New > Model from AnyLogic main menu. The New Model wizard will open.
2. In the **Model name** box, enter the new model's name: *Market*.

3. In the **Location** box, select the folder where you want to create the model. You can browse for a folder by clicking **Browse** or type the name of the folder you want to create in the **Location** box.

4. Click **Finish**.

Now, let's briefly review AnyLogic interface.
AnyLogic workspace

- The graphical editor allows you to edit the agent type’s diagram, and you can add model elements by dragging them from the Palette on to the diagram and placing them on the editor’s canvas. The elements you place inside the blue frame will appear inside the model window when you run it.

- The Projects view allows you to access the AnyLogic models you have open in the workspace, and the workspace tree helps you easily navigate them.

- The Palette view lists the items grouped in palettes. To add an element to your model, drag the element from the palette on to the graphical editor.

- The Properties view allows you to view and modify the selected item’s properties.

- To open/close a view, choose the corresponding item from the View menu. If the item is selected, the corresponding view will be visible.

- To resize a view, use your mouse to drag the view’s edge.

- You can always use the option Reset perspective in the Tools menu to return the views to their default positions.
5. Let's open the **Projects** view to examine the model's structure. You will find the **Palette** and **Projects** views in the workspace's left section, and you can switch from the **Palette** view to the **Projects** view by clicking the **Projects** tab.

![Projects view](image)

Navigating through the model in the Projects view

- The **Projects** view allows you to access the AnyLogic projects you have open in the workspace, and you can use the workspace tree to navigate them quickly and easily.

- AnyLogic uses a tree structure to display your model. The top level displays the model, the level below displays agent types and experiments, and the lower-level branches organize the elements that make up the agent structure.

- By default, a model has one agent type - **Main**, one experiment **Simulation** and built-in database to read input data and write simulation output **Database** (empty by default). The **Run Configuration** element enables tuning the model's input and output prior to uploading it to AnyLogic Cloud.

- Double-clicking the agent type or the experiment opens its diagram in the graphical editor.
• Clicking the model element in the tree selects the element and centers it in the graphical editor. This may be helpful when you cannot find an element on the graphical diagram.

In the graphical editor, you will see the empty diagram of the model's *Main* agent type.

Agents

• Agents are a model's building blocks, and you can use them to model all kinds of real-world objects, including organizations, companies, trucks, processing stations, resources, cities, retailers, physical objects, controllers, and so on.

• Each agent typically represents one of the model's logical sections. This allows you to decompose a model into many levels of detail.

Our model has one agent type, *Main*. To add consumers, we will need to create an agent type to represent consumers, and then create an agent population made up of instances of this consumer agent type. In AnyLogic, you can use the helpful New agent wizard to create agents.

6. We want to add a new model element, but we first need to switch to the Palette view by clicking the Palette tab.

![Palette tab](image)

7. Open the Agent palette. To open a specific palette, go to the Palette view and hover your mouse over the view's vertical navigation panel.

8. It will expand to show the names of all palettes so you can select the one you need. Click the Agent palette in the list to select it.
Once you are familiar with the icons, you can click the palette icon you want in the navigation bar.

9. Drag the Agent 🧣 from the Agent palette on to the Main diagram, and the New agent wizard will open.
10. On the **Step 1. Choose what you want to create** page, select the option that best meets your needs. Since we want to create multiple agents of the same type, select **Population of agents**.
11. On the Step 2. Creating new agent type page, in Agent type name box, type *Consumer*. The information in the Agent population name box will automatically change to *consumers*.

12. Click Next.
13. On the Step 3. Agent animation page, choose the agent’s animation shape. Since we are creating a simple model that uses 2D animation, choose 2D, select the General list’s first item: Person, and click Next.

Since our model only considers advertising-related product purchases, we will add a parameter – *AdEffectiveness* – to define the percentage of potential users who become ready to buy the product during a given day.

15. On the left section, in the Parameters table, click *<add new...>* to create a parameter.

16. In the Parameter box, change the default parameter's name to *AdEffectiveness*, and choose double as the parameter Type. We will assume an average of 1% of our model’s potential users will want to buy the product during a given day, so specify 0.01 as the parameter's value.

17. Click Next.
18. On the Step 5. Population size page, type 5000 in the Create population with ... agents box to create 5000 instances of the Consumer type. Each instance in the population will model a specific agent-consumer.

While we have created our agent population, we will not see 5,000 Person animation figures on Main diagram. Instead, AnyLogic will use the 5000 agents in the population we have called consumers to simulate the market when we run our model.

19. Click Next.
20. On the **Step 6. Configure new environment** page, accept the default values for the environment's space type (**Continuous**) and both its **Width** and **Height** values (500). AnyLogic will display the agents in a 500x500 pixel rectangle.

21. Select the **Apply random layout** box to randomly distribute the agents across the 500-pixel width and height we have defined. Since we do not want to create an agent network, we will accept the default **No network/User-defined** network type.

22. Click Finish.
23. Let’s use the Projects view to see the new elements that the wizard created. Expand the model tree branches to see the internals.

![Model tree branches with two agent types: Main and Consumer.]

Our model now has two agent types: Main and Consumer.

- The Consumer agent type has the agent's animation shape (person, in the Presentation branch) and the parameter AdEffectiveness.
- The Main agent type contains the agent population consumers (a set of 5000 agents of type Consumer).

Agent’s environment

The Main agent acts as the environment for the consumers population. Since the environment defines the space, layout, network, and communication that our agents use, we will need an environment to arrange our agent presentations and model the “word of mouth” advertising that occurs when our agents interact.

24. Click Main in the Projects to open its properties in the Properties view (you will find Properties in the AnyLogic window’s right half).

In the Space and network section of Main properties, you can adjust the environment settings for the consumers agent population.
The Properties view

- The Properties view is a context-sensitive view of the element's properties.
- To modify an element's properties, select the element by clicking it in the graphical editor or in the Projects view, and then use the Properties view to modify the properties.
- The Properties view has several sections. To expand or collapse a section, click its title.
- The selected element’s name and type display at the top of the view.

25. On Main diagram, select the agent population’s non-editable embedded animation shape, open the Advanced properties section, and select the Draw agent with offset to this position option.

As you can see in the following figure, the animation shape defines the upper-left corner of the 500x500 pixel space where the individual agents will reside when we run the model.
We have finished building this very simple model, and you can now run it and observe its behavior.

26. On the toolbar, click the Build button to build the model and check it for errors.

27. Locate the Run button and click the small triangle to the right. Select the experiment you want to run. Choose Market / Simulation from the list.
Since you can have several models open at the same time - and each model may have several experiments – you must select the correct experiment.

You will see the model window. Model’s presentation (the presentation you created for Main agent) shows 5000 animations for the agents that comprise the consumers population. Since we did not create any behavior for our agents, the animation appears still.
Model window’s control panel

- You can use the control panel at the bottom of model window to control the model’s execution.

 Run

 [Visible when the model is not running] Starts the simulation or, if the simulation was paused, resumes it.

 Pause

 [Visible when the model is running] Pauses the simulation. You can resume a paused simulation at any time.

 Stop

 Terminates the current experiment execution.

- To ensure the model is running, look at the model’s simulation status (Running, Paused, Idle, or Finished) displayed in the control panel.

28. We are ready to define the consumer’s logic. To continue developing our model, close the model window.
Phase 2. Defining a consumer behavior

We will continue developing our model by defining consumer characteristics and behavior. The best way to define a behavior is to use a statechart.

Statecharts

- **Statecharts** are the most advanced construct for describing event- and time-driven behavior. For some objects, this event- and time-ordering of operations is so pervasive that you can best characterize their behavior using a state transition diagram – a statechart.

- Statecharts have *states* and *transitions*. The statechart’s states are alternative, which means the object can only be in one state at a time. A transition execution may lead to a state change that makes a new set of transitions active. The statechart’s states may be hierarchical – they may contain still other states and transitions.

- One agent may have several statecharts that describe independent parts of the agent’s behavior.
We will define a consumer’s behavior as a two-state sequence:

- A consumer in the *PotentialUser* state is only potentially interested in buying the product.
- A consumer in the *User* state has purchased the product.

1. In the **Projects** view, open the *Consumer* diagram by double-clicking it. You will see the agent’s graphical diagram with the animation figure in the axis origin and the parameter.

How do you know what agent type you are editing?

Since our model has two agent types, you may wonder which agent type you are editing in the graphical editor.

- AnyLogic selects the tab of the agent type you have open in the graphical editor and emphasizes its item in the **Projects** tree (see the figure below).
- You can navigate between open graphical diagrams of different agent types by clicking the tab names (for example, *Main* and *Consumer* in the example below):

2. Start drawing a statechart by drawing two states. Open the **Statechart** palette.

3. Drag the **Statechart Entry Point** from the **Statechart** palette on to the *Consumer* diagram. You start drawing a statechart by adding a *statechart entry point*. The entry point defines the start of the statechart control flow and the statechart’s name.
Please be careful – it’s easy to confuse the Statechart entry point with the Initial state pointer, or Transition since they look alike.

You can see how AnyLogic has highlighted the statechart entry point in red. It means the entry point is not connected to any state, and the current statechart is invalid.

Let’s add the first state in the consumer’s statechart.

4. Drag the State from the Statechart palette on to the graphical diagram and connect it to the statechart entry point.

Make sure you are drawing the statechart on the Consumer diagram rather than on Main.
5. Select the state in the graphical editor and modify its properties. Name the state `PotentialUser`.

6. Use the Fill color control to change the state’s color to `lavender`.

7. Type the following Java code in the state’s Entry action field:

```
shapeBody.setFillColor(lavender)
```

![Image of state properties](image)
Code completion assistant

- You can use the code completion assistant to avoid typing the full names of elements and functions. To open the assistant, click the desired position in the edit box and press Ctrl+space (Alt+space on Mac OS). The popup window lists the model elements that are available in the given context, such as model variables, parameters, or functions.

- Scroll to the name of the element you want to add or type the element’s first letters until it appears in the list, and press Enter to insert the element’s name in the edit box.

```
Entry action: s
```

Entry action is executed when consumer switches to another state. This code displays the state change by changing the consumer animation color.

Here, `shapeBody` is the name of consumer's animation shape that the new agent wizard created. (If you expand the `Consumer's Presentation` branch in the `Projects` tree, you will see the `shapeBody` shape inside the `person` group).

Here we call the function of `shapeBody`. To access the element's function, type the element name (`shapeBody`), type a dot, and then use the code completion feature to list the element’s functions or select the function name from the list. `setFillColor()`
is one of the standard shape's functions that allows you to dynamically change the shape's fill color. It takes just one argument - a new color.

8. Add another state in the consumer's statechart:

9. Modify the state’s properties like you did earlier:

 Name: User

 Fill color: yellowGreen

 Entry action: shapeBody.setFillColor(yellowGreen);

10. Draw a transition from PotentialUser to User state to model how persons purchase the product and become product users. To do so, double-click the
Statechart palette’s Transition element (the element’s palette icon should change to ⬇️), click PotentialUser state, and click User.

Make sure that the transition connects the states. If the transition is not connected, AnyLogic highlights it in red.

11. Name the transition Ad to represent “advertising”.

12. Select the Show name checkbox to display the transition’s name on the graphical diagram.

13. The transition from PotentialUser to User state will model how advertising leads the person to buy the product. In the Triggered by list, click Rate. In the Rate field, type AdEffectiveness, and then click per day.
You can see that the icon drawn over the transition has changed from \(\bigcirc \) to \(\bigtriangledown \). This sign shows the transition’s trigger type.

To move the transition’s name or icon, select the transition, and use your mouse to drag the corresponding element to a new location.

Transition trigger types

Many types of events can trigger a transition. The following table lists the transition trigger types as well as the icons that are drawn over the transitions to help you understand their trigger type.

<table>
<thead>
<tr>
<th>Transition trigger</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Timeout** | Transition occurs after a specified time interval counted from the moment the statechart enters the “source” state of the transition. The timeout expression can be stochastic or deterministic. Primary uses:
Delay: stay in a state for a given time, then leave.
Timeout: change state if other awaited events do not occur within the specified time interval. |
| **Rate** | Used to implement a sporadic state change with a known mean time. Acts in the same way as a timeout triggered transition, but the time interval is drawn from an exponential distribution parameterized with the given rate. For example, if the rate is 0.2 the timeouts will have mean values of \(1/0.2 = 5 \) time units. |
Transition monitors a specified Boolean condition and reacts when it becomes true. The condition is an arbitrary boolean expression and may depend on the states of any objects in the whole model with continuous as well as discrete dynamics.

Please note that the condition is checked only when some events occur in the model. To ensure you do not miss the state switch moment, we recommend you add a cyclic event inside the agent and make it occur often enough not to miss the moment when the transition’s condition becomes true.

Reacts to messages from other agents. The messages can model communication between people, commands given to a machine, etc. You can define the message template in the transition properties, but only the messages that match this template will trigger the transition.

Reacts to arrival of this agent to its destination.

Please note that the transition reacts only if the movement was initiated by calling the agent’s function moveTo().

Our transition is triggered with the specified rate. In our case, when the statechart enters the state *PotentialUser*, a draw from the exponential distribution is made and the timeout is set up. Each consumer's adoption time will differ, though an average 1% of potential users will buy the product on a given day.

14. Now, let’s set up the model’s time units. To tune the model setting, switch from Palette to Projects, and then click the model item in the tree (the tree’s top item, *Market*). In the Properties view, choose **days** as the **Model time units**.
Model time. Model time units

- *Model time* is the virtual (simulated) time that the AnyLogic simulation engine maintains. The model time is not related to the real time or the computer clock, though you can run the model in a scale to real time.

- To set the relationship between the model time and real-world time where the system being modeled lives, you will need to define the *time units*. You should choose the most suitable model time unit for your model, close to your model’s typical operation durations.

For example, pedestrian flow models typically use seconds and manufacturing service systems typically use minutes, but some global economics, social and ecological models defined in system dynamics style may use months or even years.

15. Run the model. The population should gradually turn green – a change that represents the effect of advertising - until every consumer buys the product.

When advertising’s effects cause an agent to purchase the product, the agent’s state *User* becomes active, the state’s *Entry action* is executed, and the agent animation
shape's color changes to *yellowGreen*. As more people purchase the product, you will see your model’s agent animations gradually turn green.

Model execution modes

You can run an AnyLogic model in *real time* or *virtual time mode*.

- In **real time mode**, you set the relationship between your model’s time and real time by selecting how many model time units are equal to one second of actual time. You will typically use real time mode when you want your animation to appear lifelike.

- In **virtual time mode**, the model runs at its maximum speed. Virtual time mode is useful when you need to simulate your model for an extended period, and the model does not require you to define the relationship between model time units and seconds of astronomical time.

In **real time mode**, you can increase or decrease your model’s execution speed by changing the model’s *simulation speed scale*. For example, *x2* means the model runs twice as fast as the specified model speed.

You can adjust the model’s execution speed in the control panel of the model window:

16. To adjust the model’s execution speed, click the toolbar’s *Slow down* or *Speed up* buttons. If you increase the speed to *10x* – you will see the speed at which the population turns green also increase.
Phase 3. Adding a chart to visualize the model output

We want to know how many people have purchased our product at a given moment. With that in mind, we will define functions that count our product’s users and potential users, and then add a chart to show the dynamics.

1. First, define a function to count potential users. To add a new function that collects statistics for agents, open the diagram of the agent type Main, select the agent population consumers, and go to the Statistics properties section.

2. Click the Add statistics button.

We need to determine how many agents are in the PotentialUser state.

3. Define the function of type Count with the Name NPotential. The statistics of type count iterates through a given population – in our case, the number of agents – to count those that meet the selected condition.
4. Enter `agent.inState(Consumer.PotentialUser)` as the function `Condition`.

- `agent` represents the agent being currently checked in the iteration.
- `inState()` is a function that checks whether the specified state of the statechart is active.
- `PotentialUser` is the name of the agent-defined state, which is why it needs the agent type prefix `Consumer`.
5. Define a second statistics function to calculate the number of product users. Name it \textit{NUser} and let it count the number of agents, conforming the condition \textit{agent.inState(Consumer.User)}. You can duplicate the other statistics function by clicking the \textbf{Duplicate} button and changing its Name and the Condition.

Now, let’s add a chart to show the statistics these functions collect and display the adoption process dynamics.

6. Open the Analysis palette and drag the Time Stack Chart from the Analysis palette on to the Main diagram to create a chart that will display the dynamics of users and potential users. Increase the time stack chart as shown in the figure below:
AnyLogic provides several charts that you can use to visualize the data your model creates. You can find them on the Analysis palette in the Charts section.

Bar Chart
Displays data items as bars aligned at one end. The bar sizes are proportional to the corresponding data item values.

Stack Chart
Displays the contribution of several data items into a total as stacked bars. The bar sizes are proportional to the corresponding data item values.

Pie Chart
Displays the contribution of several data items into a total as sectors of a circle. The sector arcs are proportional to the corresponding data item values.
Plot

Plot plays a role of phase diagram. Each data set is a set of value pairs \(<x,y>\). Plot displays Y-values of a data set plotted against corresponding X-values. X-values are mapped to X-axis, Y-values - to the Y-axis. Plot can display several data sets at the same time.

Time Plot

Displays the history of several data items during the latest time horizon. Depending on the interpolation type, the line between two data samples is interpolated linearly or keeps the previous value until the next one.

Time Stack Chart

Displays the history of contribution of several data items into a total during the latest time horizon as stacked areas. The values are continually stacked one on top of the next with the first added data item at the bottom.
Time Color Chart
Displays the trend of several data sets during the latest time as bars of horizontal stripes of different colors (color depends on the data value). If a condition evaluates to true, the bar stripe's color will match the color you defined for this condition. Use the chart to visualize the change of agent state over time, e.g., busy / idle.

Histogram
Displays statistics collected by Histogram Data objects. The histograms are also scaled along the Y axis, so the histogram's highest bar occupies the picture's full height. You can also opt to show the PDF bars, CDF line, and mean location.

Histogram2D
Displays a collection of two-dimensional histograms. Each histogram is drawn as several rectangular color spots reflecting the PDF value or envelope at the corresponding (X, Y). The chart's X and Y axes are always scaled to fit all histograms.
Add two data items for the chart to display. Here we will call our statistics functions \textit{NUser} and $\textit{NPotential}$ we have defined for $\textit{consumers}$ population on the previous step.

7. Modify the data item's properties:
 - Title: \textit{Users} – the data item’s title.
 - Color: $\textit{yellowGreen}$
 - Value: $\textit{consumers.NUser()}$

 Our agent population name is $\textit{consumers}$, and $\textit{NUser()}$ is the statistics function that we defined for this population.

8. Add one more data item by clicking the Add button.
9. Modify the data item’s properties:

- **Title**: Potential users
- **Color**: lavender
- **Value**: consumers.NPotential()

Tuning the chart’s time scale

- Charts with history (time plot, time stack chart, time color chart) allow you to adjust the time scale.
- You configure the time chart’s time range with the property Time window. Since time charts display only a limited number of data samples at a given moment, make sure you have an adequate number of samples for the selected time window.
- If you run your model and your chart resembles the figure below, you should increase the number of data samples the chart displays or decrease the chart’s time window.
Since we want to show a one-year range, we need to adjust the chart’s settings.

10. Go to the *Scale* section and set *Time window* equal to *1 year*.

![Scale settings](image)

11. Since our chart will show statistics for *consumers* population and our model has 5,000 consumers, set the chart’s *Vertical scale* to *Fixed*, and enter *5000* in the *To* box.

![Scale settings](image)

12. Now that we have set the time window, change the maximum number of data samples that the chart displays by navigating to the section *Data update* and setting *Display up to 365 latest samples*. Since we will add one data sample each day, 365 data samples are an ideal amount for a one-year range.
13. Go to the time stack chart's Appearance properties and set it to display Model date (date only) near the time axis.
Formatting timestamps in time chart labels

Charts with history can display model dates in time (x-) axis labels, and you can format the timestamps by choosing one of the suggested formats.

Customize the timestamp format in the Time axis format property (located in the chart properties’ Appearance section). The section below displays several examples of the timestamp formats:

![Model date (date only)](image1)

![Model date (time only)](image2)

HH:mm - Only hours and minutes are displayed

![HH:mm](image3)

14. On the Main diagram, move the presentation of the consumers agent population to the right.
15. Run the model and use the time stack chart to review the process.
Phase 4. Adding word of mouth effect

In this phase, we will model what is often called the word-of-mouth effect – the way people persuade others to purchase our product.

- Allow people to contact one another. In our model, a consumer contacts an average of one other person each day.
- Our product’s current users may influence potential users during these meetings. We will define the probability of a potential user buying the product as Adoption\text{Fraction}=0.01.

Let’s develop the model’s logic by adding two consumer parameters: ContactRate and AdoptionFraction.

1. In the Projects tree, open Consumer diagram by double-clicking Consumer.
2. Add a parameter to define a consumer’s average daily contacts. Drag the Parameter from the Agent palette on to the diagram.
3. Name the parameter ContactRate.
4. The rate is 1 contact per day, so type 1 as the parameter’s Default value.
5. Add another parameter - AdoptionFraction - to define a person’s influence on others, a number that we will express as the percentage of people who will use the product after they contact the consumer. Leave the default parameter’s Type: double, and set the Default value: 0.01.

The Consumer diagram should look like this:
Now, we will allow our agents to interact. This represents the word-of-mouth discussions that will convince a percentage of consumers to buy the product.

Agent interaction

AnyLogic supports a communication mechanism unique to agent-based modeling: *message passing*.

- An agent can send a message to an individual agent or a group of agents.
- A message can be an object of any type or complexity, including a text string, an integer, a reference to an object, or a structure with multiple fields.
- To send the message to another agent, you use specific agent’s function. The information below lists the most frequently used functions for sending messages from one agent to other(s):

 - `sendToAll(msg)` – sends the message to all agents of the same population.
 - `sendToRandom(msg)` – sends the message to one randomly chosen agent from the same population.
 - `send(msg, agent)` – sends the message the given *agent* (you pass the reference to the agent-recipient as the function’s second argument)

In our model, only users who are in the *User* state will send messages. The best way to define an activity that an agent performs while in a state – in other words, an
activity they perform without exiting their current state – is to use an *internal transition*.

6. Open the *Consumer* diagram and increase the *User* state to fit the internal transition we will draw inside the state on the next step.

7. Draw an internal transition inside the *User* state. To draw a transition like the one shown below, drag the Transition from the Statechart palette inside the state so the transition's start point lies on the state border. Afterward, you can move the transition end point to another point on the state border. To add a salient point, double-click the transition.

![Diagram](image)

- **Internal and external transitions behave differently, so you must ensure your newly created transition lies completely inside the state.**

Internal transitions

- An internal transition is a cyclic transition that lies inside a state. The transition's start and end points both lie on the state's border.

- Since an internal transition does not exit the enclosing state, it does not take the statechart out of this state. Neither the exit nor entry actions are executed when the transition occurs, and the current simple state in the state is not exited.

8. Modify the transition properties. This transition will occur with the specified Rate *ContactRate* (use code completion rather than typing the parameter's full name). Name the transition *Contact* and set it to show its name.
Specify the **Action** that will be executed on triggering this transition (use the code completion to write the code):

```java
sendToRandom("Buy");
```

Since we want our product’s users to speak to potential users, we will set up a cyclic transition in the state *User*. Each time the transition takes place, the code `sendToRandom("Buy")` causes the consumer to randomly choose another agent and send them a “Buy” text message. If the agent who receives the message is a potential user (in other words, if the receiving agent is in the state *PotentialUser*), the receiving agent’s state will change to *User*.

Let’s add this transition now:

10. Draw another transition from *PotentialUser* to *User* state, and name it *WOM*. This transition will model purchases caused by word of mouth.

11. Modify the transition properties:

 - In the **Triggered by** list, click **Message**.
 - In the **Fire transition** area, select **On particular message**.
 - In the **Message** field, type "Buy"
 - Since we know not every contact is successful – in other words, a contact may not convince the potential user to buy our product – we will use *AdoptionFraction* to make successful contacts less common. Specify the transition’s **Guard**: `randomTrue(AdoptionFraction)`
Guards in transitions

- When a statechart enters a simple state, the triggers of all outgoing transitions are collected and the statechart begins to wait for any of them to occur.

- When a trigger event occurs, the guard of the corresponding transition is evaluated. If the guard is true, the transition may be taken (though alternative simultaneous events could reset the trigger). This algorithm of guard evaluation is called “guards-after-triggers”.

This is the last step in modeling word of mouth marketing. AnyLogic forwards the message from another agent to the statechart, and, if the statechart is in the state PotentialUser, it causes an immediate transition to the User state. If the statechart is in any other state, it will ignore the message.

12. In the Projects view, you may see an asterisk near the model item that shows your model has unsaved changes. On the toolbar, click Save model to save your model.
13. Run the model.

The market saturation should occur more quickly, and the chart shows the well-known S-shaped product adoption curve.
Phase 5. Considering product discards

In this phase, we will model product discards.

- Let's assume the average duration of our product's active use is six months.
- Once a user discards or consumes the product, they will need a replacement. We will model repeat purchase behavior by assuming adopters become potential adopters when they discard or consume their first units (in other words, when the User reverts to the PotentialUser state).

1. Open the Consumer diagram and add a DiscardTime parameter.

 ![DiscardTime parameter](image)

 2. This parameter will define our product's lifespan. Choose Time as the parameter's Type, click months in the Unit list, and type 6 as the Default value.

 3. Draw a transition from User to PotentialUser state to model product discards. To draw a transition with salient points like those shown in the figure, double-click the Transition element in the Statechart palette (this should change the element's icon in the palette to), click the transition's source state User, click at the salient point places, and click the target state PotentialUser.
4. Name the transition *Discard* and set it to be triggered by a constant timeout *DiscardTime*. In the list to the right, click *months*.

- **AnyLogic** uses red highlights to draw your attention to transitions (as in the lower left figure) where the end point is not connected to the state. To locate the error, select the transition and the connected points will be highlighted in cyan (see the right figure, connection to *PotentialAdopter*). If AnyLogic does not highlight the transition’s start point at *User*, you should manually move this point on to the state to establish the connection and fix the error.
Fixing mistyping errors

A misnamed model element is a common error. AnyLogic names are case-sensitive, which means typing `Discardtime` (instead of `DiscardTime`) in a model element's property will cause the following error:

![Problems view](image)

To fix the error, double-click it in the Problems view. If the error is graphical, AnyLogic will highlight the element that caused the error in the graphical editor. If the error is in an element's property, AnyLogic will open the element's properties and display the field where the problem occurred.

Our work to model product discards is complete, and any discards will generate an immediate need to purchase a replacement.

5. Run the model and watch how discards affect adoption dynamics. Even after our product saturates the market, you will notice occasional product discards.
Phase 6. Considering delivery time

Our model assumes the product is always available and the transition from \textit{PotentialUser} to \textit{User} is unconditional and immediate. Now, we will improve the model by adding a state to the statechart that reflects the amount of time between an agent’s decision to purchase the product and the time they receive it.

1. Prepare a place for another state between \textit{PotentialUser} and \textit{User} by moving the \textit{User} state toward the bottom of the screen.

2. Disconnect the \textit{User} state from the transitions.

Select the \textit{WOM} and \textit{Ad} transitions, move their end points toward the top of the screen, and disconnect the \textit{Discard} transition from \textit{PotentialUser}. Afterward, you will notice the disconnected transitions are drawn in red.
3. Add another State from the Statechart palette to the middle of the consumer's statechart and name it \textit{WantsToBuy}. Consumers in this state have decided to purchase the product, but they have not done so.
4. Reconnect transitions to the middle state: the WOM, Ad, and Discard transitions should now end in the WantsToBuy state.

5. Modify WantsToBuy like other states:
 Fill color: gold
 Entry action: `shapeBody.setFillColor(gold);`

![WantsToBuy - State](image)

6. Add a transition from WantsToBuy to User state to model the product shipment and name it Purchase.

![Statechart Diagram](image)

7. Let’s assume it typically takes a user two days to get the product. This means once the consumer’s statechart enters the state WantsToBuy, it will proceed to the state User with a two-day delay. With this in mind, set 2 days timeout for the Purchase transition:
8. Define one more statistics function to count the product's market-driven demand. In the editor of Main, click the consumers, go to the Statistics properties section, and add a statistics item: NWantToBuy with condition agent.inState(Consumer.WantsToBuy)
9. On Main, select the time stack chart, and add another data item to be displayed with the chart: `consumers.NWantToBuy()` with the title *Want to buy* and color *gold*.

10. Make the newly defined data item second in the list by selecting the item's section and clicking the “up” button.

11. Run the model, and you will notice AnyLogic displays the number of consumers who are waiting for the product in yellow.
Phase 7. Simulating consumer impatience

Our model needs to address the varying amounts of time that consumers are willing to wait for their product’s delivery. If the delivery time exceeds the time a consumer is willing to wait, the consumer will reconsider their decision and return to being a potential user rather than one who wants to buy.

Let’s start by defining two parameters in Main: maximum product delivery time (25 days) and the maximum consumer’s waiting time (7 days).

1. Open the Main agent type diagram.

2. Since we do not want the model window to display the model’s parameters at runtime, we can place them outside the model window’s default display area.

 On Main, the model window is depicted with a blue rectangular frame. Elements inside the frame will be visible at the model runtime, but you can hide them by moving the graphical diagram’s canvas slightly to the right and placing two parameters as shown in the figure below.

 ♦ To move the graphical diagram’s canvas, hold down the right mouse button as you move the mouse.

3. Configure the parameters. MaxWaitingTime defines the maximum time a consumer will wait for the product (in this case, seven days).
4. Set the other parameter, *MaxDeliveryTime* to 25 days to reflect our assumption it may take up to 25 days to deliver a product.

We assume it takes between one and 25 days – with an average of two days – to deliver the product. With that in mind, let's change the delivery time from a fixed two-day delivery period to the stochastic expression that describes this pattern.

Probability distribution functions

The table below describes AnyLogic frequently used distributions, but you will find the full list in the program's Help section.
<table>
<thead>
<tr>
<th>Probability distribution</th>
<th>Primary use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>You know the minimum and the maximum values but lack any knowledge about how the remaining values are distributed between them. In other words, you do not know if any values are more frequent than others and assume any location between min and max has the same chance of receiving a value.</td>
</tr>
<tr>
<td>uniform(min, max)</td>
<td></td>
</tr>
<tr>
<td>Triangular</td>
<td>You know the minimum and the maximum, and you have a guess about the most likely (modal) value. A triangular distribution is often used for service times or the duration of operations where you do not have enough samples to build a meaningful distribution shape.</td>
</tr>
<tr>
<td>triangular(min, mode, max)</td>
<td></td>
</tr>
<tr>
<td>Exponential</td>
<td>Describes the times between events in a Poisson process, i.e., when events occur independently at a constant average rate. Used as the inter-arrival time for input streams of customers, parts, calls, orders, transactions, or failures in process models. In agent-based models, an exponential distribution is used as timeout for rate transitions that model independent events in agents that are known to occur at a certain global average rate.</td>
</tr>
<tr>
<td>exponential(lambda, min)</td>
<td></td>
</tr>
</tbody>
</table>
Normal

\[\text{normal(sigma, mean)} \]

Gives a good description of data that tend to cluster around the mean.

Note that the normal distribution is unbounded on both sides, so if you wish to impose limits (e.g. to avoid negative values) you have to use its truncated form or use other distributions such as Lognormal, Weibull, Gamma, or Beta.

Discrete uniform

\[\text{uniform_discr(min, max)} \]

Used to model a finite number of outcomes that are equally probable, or when you have no knowledge about which outcomes are more likely to occur.

Note that both the minimum and maximum values are included in the set of possible results, so a call of \[\text{uniform_discr(3, 7)} \] may return 3, 4, 5, 6, or 7. (Borshchev, 2013)

As you can see from the table, a triangular probability distribution is the easiest way to define the required time pattern.

5. Open the Consumer diagram and select the Purchase transition. We want to change the transition’s timeout expression, and we will do that by using a wizard to choose the distribution function and insert the function’s name in the property. To substitute the existing value, use your mouse to select the existing Timeout expression.

6. Click the Choose Probability Distribution... toolbar button.
7. You will see the Choose Probability Distribution... dialog box.

8. The Choose Probability Description screen allows you to view the list of supported distributions, and you can click any name in the list to view the distribution’s description. Choose triangular in the list. Set min, max and mode parameters equal to 1, 25, 2 respectively. In the upper right, you will see PDF instantly built for the distribution with the specified parameters. Click OK when finished.

9. You will see the expression triangular(1, 25, 2) automatically inserted as the timeout value. Let’s modify the line to triangular(1, main.MaxDeliveryTime, 2)

Here main is how we access the Main agent from the consumer agent.
10. Draw the last transition *CantWait* that goes from *WantsToBuy* to *PotentialUser* state. This transition will model how a consumer’s impatience causes them to change their purchase decision, and the *Consumer* diagram will look like this:

![Diagram](image)

11. Modify the transition properties so it is triggered by **Timeout** which equals

\[\text{triangularAV}(\text{main.MaxWaitingTime}, 0.15) \] days

Rather than setting the maximum waiting time equal to constant *MaxWaitingTime*, we assume it follows a triangular distribution with an average of one week and a possible variation to up to 15 percent.
We could easily define maximum waiting time and maximum delivery time as constant parameters, but we want to vary these numbers dynamically and see how these changes affect the system’s behavior. One way we can add interactivity to our model is by adding controls and linking them to the model parameters.

Controls

AnyLogic controls may help you add interactivity to your model. You can use them to set up parameters before the model execution and change the model on-the-fly. The control may run code or make changes to the model’s parameters.

You can also associate an arbitrary action such as calling a function, scheduling an event, sending a message, or stopping the model with a control. The action is executed each time the user touches the control. The control’s value is typically available as `value` in the control’s `Action` code field and also is returned by the control’s `getValue()` function.

The table below briefly describes each control.

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td> Button</td>
<td>Enables the user to interactively influence the model. You can define a specific action (in the button’s <code>Action</code> property) the model will perform every time the user clicks the button at the model runtime.</td>
</tr>
<tr>
<td> Check Box</td>
<td>Control that can be selected or deselected, and which displays its state to the user. Check boxes are often used to change values of <code>boolean</code> variables and parameters.</td>
</tr>
<tr>
<td> Edit Box</td>
<td>A text control that allows the user to type a small amount of text. You can link this control to a variable or a parameter of type <code>String</code>, <code>double</code> or <code>int</code>. In this case, when the user changes the content of the edit box, the linked variable/parameter immediately receives this content as its value.</td>
</tr>
</tbody>
</table>
Groups of buttons in which only one button at a time can be selected. You can link this control to a variable or a parameter of type \textit{int}. In this case when the user chooses another option from the group of buttons, the linked variable/parameter immediately gets an index of this option as its value. The first button defined in the \textbf{Radio Buttons} table has index 0, the second has index 1, and so forth.

Lets the user graphically select a numeric value within a bounded interval by sliding a knob. Commonly used for modifying values of numeric variables and parameters at the model runtime. If it’s hard to set precise \textit{double} values, you can use text input in edit boxes instead of sliders.

There are four more controls:

- Combo Box
- List Box
- File Chooser
- Progress Bar

We will add a slider control that will let us select a numeric value within a bounded interval. Sliders are often used to modify values of numeric variables and parameters.

\textbf{12.} Go back to \textit{Main} diagram. Open the \textbf{Controls} palette and drag two \textbf{Sliders} on to the diagram below the chart. We will eventually link the sliders to our two parameters.
13. Modify the slider’s properties:

- Select the checkbox Link to and select the parameter \textit{MaxWaitingTime} to the right.
- Set the slider’s Minimum and Maximum values. The parameter value can vary within the range you define here, and we will set 2 as Minimum and 15 as Maximum value.
- Set the Step to 1, enabling the slider to accept only integer values from the specified range.
- Finally, click the Add labels… button to display the slider’s minimum, maximum, and current values at runtime (the \textit{min}, \textit{value}, and \textit{max} text shapes will appear beneath the slider).
14. Add another slider below and configure it as follows:

![Slider Properties](image)

Some controls have built-in labels, but you should use the Text shape to manually create them for the sliders.

15. Open the Presentation palette, drag two Text shapes on to the diagram, and place them above the sliders. Let's configure the titles of these controls.
16. In the properties view, in the Text section, enter the text that the model will display. Using text shapes, name one slider *Maximum waiting time* and the other slider *Maximum delivery time*.

17. In the properties section, under Appearance, you can customize the text’s color, alignment, font, and point size.

The labels that display the slider’s minimum, current, and maximum values are also Text shapes. Their dynamic properties will display the slider’s minimum, current and maximum values at the model’s runtime, and you can edit their labels like you would edit any text shape.
You can also move the *consumers* element to the left beyond the model window frame.

18. Run the model and observe the behavior. As you use the sliders to change the maximum waiting time or delivery time, you will see your changes reflected in consumer behaviors and whole adoption dynamics.
Phase 8. Comparing model runs with different parameter values

In this phase, we want to run the model and observe the adoption process under different settings. We could manually change the parameter values, run the model and save the results, but it’s much easier to use AnyLogic built-in experiments to compare outputs.

First, we will build an experiment that allows us to manually vary the ContactRate parameter and compare the model behavior. We want our experiment to investigate data from a period that exceeds a year, and we will use 500 days.

Compare Runs experiment

This interactive experiment allows you to enter the model parameters, run a simulation, and add the simulation’s output to the charts for later comparison.

The experiment’s default user interface includes the input fields and the output charts. The parameters define the input, and the parameters’ control type depends on the settings of their Value editor.

1. Open the Main diagram and add a Data Set from the Analysis palette. Name it usersDS.
Data Set is capable of storing 2D (X,Y) data of type *double*. We want this dataset to store the history of product sales dynamics. We will store data samples, each with a timestamp and the current number of the product users.

2. To store the timestamps, leave the dataset's option **Use time as horizontal axis value** selected.

3. Set the value that the dataset will store. In the **Vertical axis value** property, type: `consumers.NUser()`.

4. The dataset keeps a limited number of recent latest data items, and we will limit our sample size to 500. Set the dataset to **Keep up to 500 latest samples**. Set it to **Update data automatically** with the default **Recurrence time**: 1. We will add one data sample for one day of the model's lifetime.
You now have the dataset that will store the history of the key variable (the number of product users). It obtains data samples by calling the statistics function \(NUser() \) that we created for the agent population \textit{consumers}.

5. Next, make changes in the \textbf{Value editor} section for both parameters on \textit{Main} diagram (\textit{MaxWaitingTime} and \textit{MaxDeliveryTime}). Choose \textit{Slider} as \textbf{Control type}, set \textbf{Min} and \textbf{Max} values the same as we have in the sliders on \textit{Main}, and if you want, change the default label (say, \textit{Maximum waiting time}).

![Value editor](image)

Now we’re ready to create a Compare Runs experiment.

6. Open the \textbf{Projects} view, right-click the model item, and select \textbf{New > Experiment} from the context menu. The \textbf{New experiment} wizard will pop up.

7. Select \textbf{Compare Runs} experiment from the list of experiment types and click \textbf{Next}.
8. On the Parameters page, add both parameters to the Selection column. To add a parameter, select it in the Available list on the left and click the arrow. You can also click the button to add all the parameters. Click Next after both parameters are in Selection.
9. On the wizard’s following page, configure the output charts for this experiment. The chart will display the data collected by the dataset usersDS. In the Charts table, do the following:

 a. In the Type column, select dataset.

 b. In the Chart Title column, type Users.

 c. In the Expression column, refer to the dataset you defined in Main as root.usersDS where root is the model's top-level agent (Main)

10. Click Finish.

The CompareRuns experiment diagram should open automatically, and you will see the default user interface we created with the wizard.
11. We want our experiment to simulate the model for just 500 days. To do this, select *CompareRuns* experiment in the *Projects* tree. In the experiment properties, open the *Model time* properties section, and type 500 in the *Stop time* field.

12. Run the experiment. Select the newly-created experiment from the *Run* list: *Market / CompareRuns*, or right-click the *CompareRuns* experiment in the *Projects* tree and select *Run* from the context menu.

13. In the model window, click the *Run* button to see the result associated with the default parameter values. Afterward, change the parameter values and click *Run* again to observe the system behavior for the new settings. The chart displays all the results for your review.
14. Each curve in a chart corresponds to a specific simulation run, and you can click any item in the chart's legend to highlight the curves that correspond to the run. The controls on the left will show the values that led to this result. To deselect a curve, click on its legend a second time.

15. You can copy the datasets by hovering the mouse on the chart area and clicking the icon in the top-right corner of the chart.

Now that you have finished developing the agent-based Market model, you can extend it by making the consumer's logic more sophisticated (for example, by introducing competing products). You can find a similar model Statechart for Choice of Competing Products in the Models from the "Big Book of Simulation Modeling” section of AnyLogic example models. To view the models, choose Examples from the Help menu.
System Dynamics modeling

“System dynamics is a perspective and set of conceptual tools that enable us to understand the structure and dynamics of complex systems. System dynamics is also a rigorous modeling method that enables us to build formal computer simulations of complex systems and use them to design more effective policies and organizations.”

The system dynamics method was created in 1950s by MIT Professor Jay Forrester. Drawing on his science and engineering background, Forrester sought to use the laws of physics, in particular the laws of electrical circuits, to investigate economic and social systems.

Today, system dynamics is typically used in long-term, strategic models, and it assumes high levels of object aggregation: SD models represent people, products, events, and other discrete items by their quantities.

System dynamics is a methodology to study dynamic systems. It suggests you:

- Model the system as a causally closed structure that defines its own behavior.
- Discover the system's feedback loops (circular causality) balancing or reinforcing. Feedback loops are the heart of system dynamics.
- Identify stocks (accumulations) and flows that affect them.

Stocks are accumulations and characterize the system state. They are the memory of the system and sources of disequilibrium. The model works only with aggregates - the stock’s items are indistinguishable. Flows are the rates at which these system states change.

If you're having difficulty distinguishing between stocks and flows, consider how we measure them. Stocks are usually expressed in quantities such as people, inventory levels, money, or knowledge, while flows are typically measurements of quantities in a given time period such as clients per month or dollars per year.
This chapter will teach you how to use AnyLogic to develop system dynamics models. If you want more information about the system dynamics approach, we recommend *Business Dynamics: Systems Thinking and Modeling for a Complex World* by John Sterman.
SEIR model

We're about to build a model that displays the spread of a contagious disease among a large population. Our sample model will have a population of 10,000 people – a value we call *TotalPopulation* – of which one person is infectious.

- During the infectious phase, a person comes into contact with an average of *ContactRateInfectious* = 1.25 people each day. If an infectious person comes into contact with a susceptible person, the susceptible person's probability of infection is *Infectivity* = 0.6.

- After a susceptible person is infected, the infection latent phase lasts for *AverageIncubationTime* = 10 days. We will use the word *exposed* to describe people who are in the latent phase.

- After the latent phase, infectious phase starts. This phase lasts for *AverageIllnessDuration* = 15 days.

- Persons who have recovered from the disease are immune to a second infection.

Phase 1. Creating a stock and flow diagram

1. Create a new model by selecting File > New > Model from the menu, and then name it *SEIR*. Select *days* as the Model time units.
Let's start with drawing stock and flow diagram. To model an epidemic's progress, we need to reduce our population diversity. In this example, we will consider four important characteristics:

- **Susceptible** - people who are not infected by the virus
- **Exposed** - people who are infected but who can't infect others
- **Infectious** - people who are infected and who can infect others
- **Recovered** – people who have recovered from the virus

SEIR is an acronym that represents the four stages: Susceptible-Exposed-Infectious-Recovered. The terminology and the overall structure of the problem is taken from the ("Compartmental models in epidemiology". n.d.) -- namely, from the SEIR (Susceptible Exposed Infectious Recovered) model.

There are four stocks in our model - one for each stage.

2. Open the System Dynamics palette. Drag the Stock from the System Dynamics palette on to the diagram. Name it **Susceptible**.
3. Add three more stocks. Place them as shown in the figure and name them *Exposed, Infectious, and Recovered.*

![Diagram showing the addition of three more stocks: Susceptible, Exposed, Infectious, and Recovered.]

Stocks and flows

In System Dynamics, *stocks* (also known as levels, accumulations, or state variables) represent real-world stocks of material, knowledge, people, money, etc. *Flows* define their rate of change - how stock values change and define the system’s dynamics. Here are some examples of stocks and flows:

<table>
<thead>
<tr>
<th>Stock</th>
<th>Inflows</th>
<th>Outflows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Births</td>
<td>Deaths</td>
</tr>
<tr>
<td></td>
<td>Immigration</td>
<td>Emigration</td>
</tr>
<tr>
<td>Fuel tank</td>
<td>Refueling</td>
<td>Fuel consumption</td>
</tr>
</tbody>
</table>

Flow may flow out of one stock and flow in another. Such a flow is outflow for the first stock and inflow for the second one at the same time:

![Diagram showing flow between Potential Adopters, Adoption Rate, and Adopters.]
Flow may flow into a stock from nowhere. In this case the cloud (denoting "source") is drawn at the flow's starting point.

And symmetrically, flow may flow out from a stock to "nowhere". In this case the cloud (denoting "sink") is drawn at the flow's end point.

The flow's arrow shows its direction.

In our model, susceptible people are exposed to the virus, become infectious, and then recover. It's a progression that requires our model to use three flows to drive people from one stock to the next.

4. Add the first flow that flows from the stock *Susceptible* to *Exposed*. Double-click the stock where the flow flows out (*Susceptible*), and then click the stock where it flows in (*Exposed*).

5. Name the flow *ExposedRate*.
6. You can look at the formulas of *Susceptible* and *Exposed* stocks. Since our *ExposedRate* flow reduces the value of *Susceptible* stock and increases *Exposed*, the formulas should be the same as in the figures below. AnyLogic automatically created these formulas when you added the flow.

Formulas of stocks

AnyLogic automatically generates a stock’s formula according to the user's stock-and-flow diagram.

Stock value is calculated according to flows flowing in and out from the stock. The value of inflows – the flows that increase stock value – are added and the value of outflows – flows that reduce the stock – are subtracted from the stock’s current value:

\[\text{inflow}_1 + \text{inflow}_2 \ldots - \text{outflow}_1 - \text{outflow}_2 \ldots \]

In the classic system, dynamics notation only flows can appear in the formula. The formula is non-editable and no other elements other than flows flowing in and out the stock can appear in the formula.

7. Add a flow from *Exposed* to *Infectious*, and then name it *InfectiousRate*.

8. Add a flow from *Infectious* to *Recovered*, and then name it *RecoveredRate*.
9. Rearrange the flow names as shown in the figure below. To do this, select a flow and then drag its name.

10. Now, let’s define the parameters and dependencies. Add five **Parameters**, rename them, and define their default values according to the information below:

- **TotalPopulation** = 10 000
- **Infectivity** = 0.6
- **ContactRateInfectious** = 1.25
- **AverageIncubationTime** = 10
- **AverageIllnessDuration** = 15
11. Define the number of infected people by specifying 1 as the Initial Value of the stock *Infectious*.

12. Define the Initial value for the stock *Susceptible: TotalPopulation-1*.

You may press Ctrl+space (Mac OS: Alt+space) and then select the parameter's name from the Code Completion assistant.

You will see the red sign to the expression's left. The reason for the problem is you have defined a dependency between two elements in the stock and flow diagram (the stock *Susceptible*’s initial value depends on the parameter *TotalPopulation*), but this dependency is not defined graphically as it should be.
Dependency links

Stock and flow diagrams have two types of dependencies:

- An element (stock, flow, auxiliary, or parameter) is mentioned in a flow or auxiliary's formula. This link type is drawn with a solid line:

- An element is mentioned in the stock's initial value. This link type is drawn with a dotted line:

You should use links to graphically define dependencies among a stock and flow diagram's elements.

If an element A is mentioned in the equation or element B's initial value, you should first connect these elements with a link from A to B and then type the expression in B's properties.

13. Draw a dependency link from TotalPopulation to Susceptible.

In the System Dynamics palette, double-click the Link element, click TotalPopulation, and then click the stock Susceptible. You should see the link with small circles drawn on its end points:
14. Let's define the formula for the flow $ExposedRate$.

Click the flow and define the following formula using the Code Completion assistant:

$$Infectious \times ContactRate_{Infectious} \times Infectivity \times Susceptible / TotalPopulation$$

We need to draw dependency links from the mentioned variables and parameters to this flow. You may find it tedious to manually draw the links, so we will show you how to add links using AnyLogic link auto-creation mechanism.

15. Right-click $ExposedRate$ flow in the graphical diagram, and choose Fix Variable Links > Create Missing Links from the context menu. Afterward, you should see the links in the stock and flow diagram:
16. Define the following formula for *InfectiousRate*:
 \[\text{Exposed} / \text{AverageIncubationTime} \]

17. Define the following formula for *RecoveredRate*:
 \[\text{Infectious} / \text{AverageIllnessDuration} \]

18. Draw the missing dependency links, and your stock and flow diagram should resemble the following image:

19. Adjust the appearance of dependency links. Modify the links’ bend angles to make the diagram match the figure below. To adjust the link’s bend angle, select it, and then drag the handle in the middle of the link.
20. Run the model and inspect the dynamics using the variables’ inspect windows. To open a variable's inspect window, click the variable to select it. To resize the window, drag its lower right corner.

21. To switch the inspect window to the plot mode, hover the mouse over the inspect window’s title bar and click the “plot” icon there.

22. Increase the model execution speed to make the simulation go faster.
Phase 2. Adding a plot to visualize dynamics

Feedback loops: balancing and reinforcing

System dynamics studies causal dependencies in systems. There are two types of feedback loops: *reinforcing* and *balancing*.

Here are some hints how to know the loop type (taken from Wikipedia).

To determine if a causal loop is reinforcing or balancing, start with an assumption such as "Variable \(N\) increases", and then follow the loop.

The loop is:

- **reinforcing** if, after going around the loop, you get the same result as the initial assumption.
- **balancing** if the result contradicts the initial assumption.

You can also use the alternate definition:

- **reinforcing** loops have an even number of negative links (zero also is even)
- **balancing** loops have an uneven number of negative links.

We will add a loop identifier for one loop to show you.

1. Drag the Loop element from the System Dynamics palette on to the diagram, and then place it as shown in the figure.

2. Go to the loop’s Properties, change its Type to R (stands for Reinforcing), leave the default Clockwise direction, and specify the text AnyLogic will display near the loop icon: *Contagion.*
Loop identifiers

Loop is a graphical identifier with a label that briefly describes the loop’s meaning and an arrow that shows the loop’s direction.

Rather than defining the causal loop, it provides information about how your stock and flow diagram's variables affect one another. By adding loops, you can help other users understand the stock and flow diagram’s influences and causal dependencies.

Contagion loop is reinforcing. An increase in *Infectious* leads to an increase of *ExposedRate*, which in turn leads to a greater increase of *Exposed*. All links in this loop are positive.

Please find out what are other loops in this stock and flow diagram. What are their directions and types?

Let’s add a time chart to plot *Susceptible, Exposed, Infectious, and Recovered* people.

3. Drag the Time Plot from the Analysis palette on to the diagram, and extend the time plot as shown in the figure below.

4. In the Properties view, expand the Data section. Modify the properties of the data item that was created by default:
 - Title: *Susceptible people* – title of the data item.
• Value: Susceptible (use Code Completion Master).

5. Using the button add three data items to display the values of stocks Exposed, Infectious, and Recovered in the same way - and don't forget to define the corresponding Titles.
6. To obtain data samples for the whole model run, in the **Data update** properties section, set the chart to **Display up to 300 latest samples**.

7. In the **Scale** section, ensure the time plot displays data for 300 model time units by setting the **Time window** to **300 model time units**.

8. We have finished our last model. Now, run the model and use the chart you added to view its dynamics.
Phase 3. Parameter variation experiment

In this phase, we will conduct parameter variation experiment to determine how different contact rates affect the infection rate. We will do this in AnyLogic Cloud.

AnyLogic Cloud

- AnyLogic Cloud is a web service that allows you to run models online on any device, including phones and tablets, and share the models with other users.
- AnyLogic Cloud is a powerful tool for performing online simulation analysis with a wide range of model experiments and custom web dashboards.
- AnyLogic Cloud uses the Amazon Web Services platform and is publicly available to anyone. Even if you are not using the AnyLogic modeling environment, you can run models in Cloud and gain simulation insights. (The AnyLogic Company, 2018).

1. In the Projects tree, double-click the Run Configuration: Main item.
2. You will see the Run Configuration editor. Here you can set up the inputs and outputs of the model before uploading it to AnyLogic Cloud. Select all parameters in the Inputs tree and drag them to the right into the empty Inputs section.
3. Do the same for the single output element (*plot*) – drag it from the Outputs tree branch to the Outputs section on the right.

You will see the Inputs and Outputs sections populated with the selected elements. The selected parameters will become adjustable inputs of the model exported to AnyLogic Cloud. The plot will become the output of the cloud model.
4. To ensure that the model run simulates exactly 300 days, we need to limit the model life to 300 days. In the Run Configuration properties, expand the Model time section. Set the Stop option to Stop at specified time and set the Stop time to 300.

5. In the general section of the properties, click the Export model to AnyLogic Cloud label.

6. If you have not saved your model before, AnyLogic will suggest that you save it. Accept.

7. The Export model to AnyLogic Cloud dialog box appears.

8. You need an account to work with AnyLogic Cloud. Click the register new account link.

9. The AnyLogic Cloud login page opens in your system's default web browser. Switch to the Sign up tab.

10. Enter your email address in the Login edit box.

11. Enter a password and repeat it in the Password and Confirm password fields.

12. Click Sign up.
13. You will receive a confirmation email shortly. Click a link in this email to activate your account.

14. Let’s go back to AnyLogic. In the Export model to AnyLogic Cloud dialog box, you will need to enter the credentials of your newly created AnyLogic Cloud account.

Enter the **Email** and **Password** in the appropriate boxes. Select the **Remember me** option to save your credentials in AnyLogic and automatically log in to AnyLogic Cloud next time.

15. Click **Log in**.

16. On the second page of the dialog, you can select which model you want to upload. We want to upload a brand new model to AnyLogic Cloud, so leave the **Create new model** option selected in **Model**.

In the **Model name** field, you can enter a name for your model, and in the **Icon** list you can select the thumbnail for the model based on one of the agents or experiments. This thumbnail will be visible on various model screens in AnyLogic Cloud.

You can choose to upload the model source files to make it available to download and execution on other computers. To do this, leave the **Include model source files** option checked.

If the **Provide public access to this model** option is selected, the model you are about to upload will be available to every AnyLogic Cloud user. Disable it for now. In case you decide to give someone access to this model in the future, you can do so in AnyLogic Cloud.

17. On the next page of the dialog, you can select which files you want to upload with the model. Our model is very simple: it contains only one ALP file. Just click **Finish** to continue.

18. After AnyLogic has finished uploading the model to AnyLogic Cloud, your default browser will open and display a newly created page for the model you have just exported. Note that in order to see this page, you should also log in to Cloud using your default browser.

19. First, let’s run the simulation experiment in Cloud. Open the default experiment by clicking its name (**Experiment**) in the left sidebar, then click the **Run** button at the top of the web page.
20. In the Outputs section, you will see the time plot. It should look like the one you got when you ran your model in AnyLogic.

21. Let’s create another experiment in Cloud. Click New experiment in the left sidebar.

22. You will see the New experiment pop-up window. In the Experiment name field, type ContactRateVariation. In the Experiment Type area, click Variation, and then click Add.
Parameter variation experiment

The parameter variation experiment allows us to create a complex model simulation that performs a series of individual model runs that vary by one or more parameters. After the experiment is complete, the results of each run are displayed on a single diagram to help us better understand how the varying parameters affected the results of our model.

By running our experiment with fixed parameter values, we can also assess the effect of random factors in stochastic models.

23. You will see another experiment appear in the left panel. The parameters of the top-level agent of the experiment (in our case, Main) are displayed in the Inputs section. By default, all the parameters have fixed values. These values will not change during the parameter variation experiment. To ensure that our experiment varies the contact rate, set this behavior in the dashboard editor. Click the label as shown in the figure below.
24. Locate the *Contact rate infectious* parameter and change its control’s type to *Varied in range*.

25. Click the **Save dashboard** button to save your changes.

26. Set the parameter’s minimum value: 0.3 and maximum value: 2 with a step of 0.1.

27. We’re ready to run the experiment and view the dynamics of the infectious disease from multiple simulation runs using output charts. Click the **Run** button to run the variation experiment.
The variation experiment performs a series of runs, each using a different value for the *ContactRateInfectious* parameter, and then adds the simulation output to the output charts.

Each plot shows multiple curves (one for each simulation run), 18 in total. In other words, there are 18 infection scenarios for contact rates ranging from 0.3 to 2, representing the 18 steps in the parameter variation range that we defined earlier.

Hover the mouse over a chart's curve to see the parameter value used to obtain that particular curve. You can see how higher contact rates allow the infection to spread more quickly.
Phase 4. Calibration experiment

In this phase, we will tune our model’s parameters to ensure its behavior matches a known (observed) pattern.

Since we can’t directly measure two parameters – *Infectivity* and *ContactRateInfectious* – we need to determine their values before we use the model. The best way to do this is to use *calibration*, a process that uses a similar case’s historical data and adjusted parameter values to help ensure our model reproduces the historical data.

Calibration experiment

- *Calibration experiment* uses the built-in optimizer to locate the model parameter values that correspond to the simulation output that best fits the given data.

- Calibration experiment iteratively runs the model, compares the model’s output to the historical pattern, and then changes the parameter values. After a series of runs, the experiment will determine which parameter values produce the results that best match the historical pattern.

We will start by adding the historic data – the number of infected people over time – to our model. While the data samples are stored in a text file in the table form, AnyLogic table function allows us to use this data to build the curve.

Table functions

- *Table function* is a function defined in the table form. The user defines a function by providing several (argument, value) pairs, and AnyLogic then uses a combination of the data and the selected interpolation type to build the table function. A function call that passes a value as a function argument will return a (possibly, interpolated) function value.

- You may need table functions to define a complex non-linear relationship which cannot be described as a composition of standard functions, or to bring experimental data defined as a table function to a continuous mode.

1. Open the *Main* diagram and add a *Table function* from the *System Dynamics* palette. Name it *InfectiousHistory*.
2. Open the *HistoricData.txt* file from *AnyLogic folder/resources/AnyLogic in 3 days/SEIR*. The *AnyLogic folder* is the location on your computer where you installed AnyLogic, such as *Program Files/AnyLogic 8 Personal Learning Edition*.

3. Copy the text file’s contents to the Clipboard, go to the table function properties' *Table Data* section, and then click the *Paste from clipboard* button. The *Argument* and *Value* columns will automatically update.

4. You can preview the curve built for the table function in the table function’s properties’ *Preview* section.
5. Set the **Out of range** option to **Nearest** to ensure the function correctly addresses cases where the function’s argument exceeds the value of 300 that we defined in the **Table data**.

We’re using the **Nearest** option to ensure the nearest valid argument extrapolates the function. This means that in all arguments to the left of the range, the function will take the value in the leftmost point. Conversely, in all arguments to the right of the range, the function will take the value in the rightmost point. The preview graph reflects the current inter- and extrapolation.

Now, we will add a data set to gather data about the number of infectious people during the simulation.

6. Right-click the **Infectious** stock and then click **Create Data Set**.
7. After the *InfectiousDS* data set displays, navigate to its properties. Since we want to view the infectious disease dynamics, leave the **Use time as horizontal axis value** checkbox selected.
8. Select **Update data automatically** and leave **Recurrence time:** 1 to add one data sample to our dataset for each model life day.

9. To obtain data samples for the whole model run, set the dataset to **Keep up to 300 latest samples.**

We’re ready to create our experiment.

10. Right-click the model item (*SEIR*) in the **Projects** tree, point to **New**, and then click **Experiment**. In the **New Experiment** wizard, choose **Calibration** as the **Experiment type** and then click **Next**. This time, we will use the wizard to set the parameters.
11. Change the parameter types we want to calibrate (*Infectivity* and *ContactRateInfectious*) from fixed to continuous, and then set the range’s Min and Max values as shown in the figure below.

![Parameter Table](image)

12. In the Criteria table shown below, enter the following information.

- **Title**: *Infectious curve match*
- **Match**: *data series*
- **Simulation output**: *root.InfectiousDS*
- **Observed data**: *root.InfectiousHistory*
- **Coefficient**: *1.0*

![Criteria Table](image)

Again, the top-level agent *Main* is available here as *root*. We use our dataset *InfectiousDS* to retain the model output at the end of a simulation run and compare it to the historic data from the *InfectiousHistory* table function.

While our model has one criterion, you can use coefficients if your model has several criteria.

13. Click Finish. The *Calibration* experiment diagram will display the configured user interface (UI).

14. In the graphical editor of *Calibration*, click the blue line (drawn over the axis). It is the model frame that defines the size of the model window. In the
properties, adjust its **Width** to 900 and **Height** to 700 to fit the charts generated by the wizard into the window.

The image below shows the experiment's properties. Its objective is to minimize the difference between the model output and historical data.

15. Open the calibration experiment properties' **Advanced** section and then clear the **Allow parallel evaluations** checkbox.
16. Run the calibration experiment by either right-clicking *Calibration* in the *Projects* view and then clicking *Run*, or by selecting *SEIR / Calibration* from the list of experiments in the Run toolbar menu.

17. After the calibration is complete, you can copy the best fitting parameter values by clicking the **copy best** button in the model window and then paste them into the simulation experiment by clicking the **Paste from clipboard** button that you will find on the *Simulation* experiment’s properties page.

After you have pasted the parameter values into the experiment, you can then run the *Simulation* with the newly calibrated parameter values.
Discrete event modeling with AnyLogic

Discrete event modeling is nearly the same age as system dynamics. In 1961, IBM engineer Geoffrey Gordon introduced GPSS, considered to be the first software implementation of the discrete event modeling method. Today, several programs - including modern versions of GPSS - offer discrete event modeling.

- Discrete event modeling requires a modeler to think about the system that he or she wants to model as a process - a sequence of operations that agents perform.

A model's operations can include delays, service by various resources, process branch selections, splits and many others. As long as agents compete for limited resources and can be delayed, queues will be part of nearly all discrete event models.

The model is specified graphically as a process flowchart where blocks represent operations. The flowchart usually starts with "source" blocks that generate agents and inject them into the process and ends with "sink" blocks that remove them.

Agents – originally named transactions in GPSS or entities in other simulation software – can represent clients, patients, phone calls, physical and electronic documents, parts, products, pallets, computer transactions, vehicles, tasks, projects, ideas, and so forth. Resources represent staff, doctors, operators, workers, servers, CPUs, computer memory, equipment, and transport.

Service times and agent arrival times are usually stochastic, and since they're drawn from a probability distribution, discrete event models are themselves stochastic. In simple terms, this means a model must run for a specific amount of time or complete a specific number of replications before it produces meaningful output.

Typical output expected from a discrete event model includes:

- Utilization of resources
- Time spent in the system or its part by an agent
- Waiting times
• Queue lengths
• System throughput
• Bottlenecks
Job Shop model

Our goal is to create a discrete event model that will simulate a small job shop’s manufacturing and shipping processes. The raw materials that are delivered to the receiving dock are placed into storage until processing takes place at the CNC machine.

Phase 1. Creating a simple model

We will start by creating a simple model that will simulate the pallets’ arrival at the job shop, their storage at the shipping dock, and their arrival at the forklift area.

1. Create a new model. In the New Model wizard, set the Model name: Job Shop, and Model time units: minutes.

2. Open the Presentation palette. The palette has several shapes that you can use to draw model animation, including a rectangle, a line, an oval, a polyline and a curve.

3. On the Presentation palette, select the Image shape and then drag it on to the Main diagram. You can use the Image shape to add images in several graphic formats -- including PNG, JPEG, GIF, and BMP – to your presentation.

4. You will see the dialog box that prompts you to choose the image file the shape will display.
5. Browse to the following location and then select the *layout.png* image:

 AnyLogic folder/resources/AnyLogic in 3 days/Job Shop

After you select the `layout.png` image, our diagram of the *Main* agent type should look like the following image:

AnyLogic adds the image in its original size on to the *Main* diagram, but you can also change the image’s width or length. If you distort the image’s proportions as in the figure below, you can revert to the image’s original size by opening the *Properties* view and clicking *Reset to original size*.

6. Select the image in the graphical editor. In the *Properties* view, select the *Lock* checkbox to lock the image.
Locking shapes

- You can lock a shape to ensure it doesn’t respond to your mouse click and you can’t select it in the graphical editor. You will find this very helpful as you draw shapes on top of layouts that represent facilities such as factories or hospitals.
- If you need to unlock a shape, right-click in the graphical editor and select **Unlock All Shapes** from the menu.

Our next step is to use the Space Markup palette to place space markup shapes on top of the job shop’s layout. We will use paths and nodes to create a network.

Creating a network

Paths and *nodes* are space markup elements that define the locations of agents:
- A **Node** is a place where agents may reside or perform an operation.
- A **Path** is a route that agents can use to move between nodes.
Together, nodes and paths make up a network that a model's agents can use to move along the shortest paths between their origin and destination nodes. You will usually create a network when your model's processes take place in a defined physical space, and it has moving agents and resources. It is assumed that network segments have unlimited capacity, and the agents do not interfere with one another.

Now that you know a little bit about networks and their component parts, we’re ready to create a network that will define the movement paths for our model's pallets. The first step is to use rectangular nodes to define specific areas on the job shop's layout.

Draw the rectangular node over the job shop’s entrance, as shown in the figure below, to represent our model’s pallet receiving dock.

7. Open the Space Markup palette and drag the Rectangular Node element on to the Main diagram. Resize the node. The node should look as in the figure below.

8. Name the created node receivingDock.

9. Draw a node to define the location where the model’s agents will park forklift trucks once the trucks are idle or the agents no longer need them to complete a task. Use another Rectangular Node to draw the parking area as shown in the figure below and then name this node forkliftParking.
10. Define your model’s warehouse storage by dragging the Storage element from the Material Handling section of the Space Markup palette onto the layout and placing it as shown below.

Storage

The Storage space markup element graphically defines a storage, consisting of pallet rack(s). Each rack is composed of cells. A single cell can host a single agent (material item).

One storage element can contain multiple pallet racks. It supports the following alternative modes of the rack placement:
Back-to-back - the racks are organized in pairs back-to-back. This way each aisle provides access to two racks.

Stand-alone - all racks face in the same direction and each aisle can provide access to a single rack.

We will obviously use the back-to-back storage configuration (the default one).

11. In the storage's *Properties* area, do the following:
 a. Set the *Number of bays is* property to calculated based on dimensions.
 b. In the *Rack* section, set *Number of shelves*: 2

12. Resize the storage as shown in the figure below. With the settings you have previously set, the storage should have 13 bays.

13. Position the left rack as shown below by dragging the marked handle to the left.
14. Similarly, by dragging the handle on the right side of the right rack place it between two aisles on our layout.

15. Decrease the access zone by dragging the rightmost handle as shown below.

16. Now, when we've finished configuring the storage, it is time to create the network that will define paths allowing forklift trucks to reach every storage's
cell. Click the Create storage network button in the storage’s Properties. Confirm the action in the dialog box, and you will see the network of nodes and paths created. This network will be used by forklift trucks to deliver and retrieve items from/to the storage.

Now let’s continue drawing a network by adding paths which will connect both nodes and the storage. First, draw the path connecting the storage to the node at the entrance, receivingDock.

17. Do the following to draw a movement path that will guide our model’s forklift trucks:

 a. In the Space Markup palette, double-click the Path element to activate its drawing mode.

 b. Draw the path as shown in the figure below by clicking the receivingDock border, and then clicking in the center of the bottom left point node of the network you’ve created for the storage.
18. Do the following to draw a movement path that will guide our model’s forklift trucks. Draw one more movement path as shown in the figure below by clicking in the center of the bottom right point node, then clicking in the diagram to add the path’s turning point, and finally clicking the `forkliftParking` node’s border.

19. Similarly draw one more movement path as shown in the figure below.
Make sure the network elements are connected properly. If you have successfully connected the nodes with paths, the path's connection points will display cyan highlights each time you select the path.

By default, paths in AnyLogic are bidirectional. However, you can limit movement along a selected path to one direction by clearing the Bidirectional property and then defining the movement direction. You can view a given path's direction by selecting the path and then viewing the direction arrow that displays in the graphical editor.

We have marked up our model's space by drawing the important locations and paths on top of our layout, and we will now use the AnyLogic Process Modeling Library to model the processes.

Process Modeling Library

The blocks in Process Modeling Library allow you to use combinations of agents, resources, and processes to create process-centric models of real-world systems. You learned about agents and resources earlier in this section, and we will build upon that foundation by defining processes as operations sequences that include queues, delays, and resource utilization.

Your model's processes are defined by flowcharts, the graphical process representations you construct from the Process Modeling Library's blocks. In the following steps, you will create the process flowchart.
20. Drag the Source element from the Process Modeling Library palette on to the graphical diagram and name the block sourcePallets.

While the Source block usually acts as a process starting point, our model will use it to generate pallets.

21. In the sourcePallets block’s Properties area, do the following to ensure the model’s pallets arrive every five minutes and appear in the receivingDock node.

 a. In the Arrivals defined by area, click Interarrival time.

 b. In the Interarrival time box, type 5, and select minutes from the list on the right to have pallets arrive every five minutes.

 c. In the Location of arrival area, click Network / GIS node in the list.

 d. In the Node area, click receivingDock in the list.
How to refer to model elements from block’s parameters

The block’s parameters offer two ways to select a graphical element:

- You can select a graphical element from the list of available and valid elements that displays beside the parameter.

- You can select a graphical element by clicking the selection button that displays beside the list. If you click the selection button, it will limit your choices to the available and valid elements that you can select by clicking in the graphical editor (the figure below shows you how the diagram will look at this
moment, when you hover the mouse over the selectable element, its name will appear):

Continue constructing the flowchart. Now we need to add storage management logic, so it is time to use **Material Handling Library** blocks:

22. Switch to the **Material Handling Library** palette and drag the **Store** block on to the diagram and place it near the **sourcePallets** block so they are automatically connected as shown in the diagram below.

The **Store** block places pallets into the given storage’s cells.
23. In the block’s Properties area, do the following:

 a. In the Name box, type `storeRawMaterial`.

 b. Set that Agents move: independently. We do this now to run the first phase of our model without errors and see the intermediate results. In the next phase we will add resources (forklift trucks) to make the model more realistic.

 c. In the Storage list, click `storage`.
24. Add a Delay block from the Process Modeling Library to simulate how pallets wait in the rack and then name the block `rawMaterialInStorage`.

You have probably noticed that AnyLogic automatically connects the block’s right port to the following block’s left port. Each library block has a left input port and a right output port, but you should only connect input ports to output ports.

25. In the `rawMaterialInStorage` block’s Properties area, do the following:

 a. In the Delay time box, type `triangular(15, 20, 30)` and select minutes from the list.

 b. Select the Maximum capacity checkbox to ensure agents will not get stuck as they wait to be picked up from storage.
26. Add a Retrieve block from the Material Handling Library, connect it to the flowchart, and then name it \textit{retrieve_RawMaterial}.

In our model, the Retrieve block removes a pallet from a cell in the storage and then delivers it to the specified destination.

27. In the \textit{retrieve_RawMaterial} block's Properties area, do the following:

 a. Set that Agents move: independently.

 b. In the Node list, click \textit{forklift_Parking} to specify where the forklift trucks should deliver the pallets.

28. Add a Sink block from the Process Modeling Library. The Sink block disposes agents and is usually a flowchart's end point.
29. We have finished building this simple model, and you can now run it and observe its behavior. Run the model (Job Shop / Simulation experiment). You will see how pallets appear at the job shop and then they are stored in the storage.
Phase 2. Adding resources

Let’s continue developing our model by adding resources – forklift trucks – to store the pallets in the storage and then move them to the production area.

Resources

Resources are objects that agents use to perform a given action. An agent must obtain the resource, perform the action, and then release the resource.

Some examples of resources include:

- A hospital model’s doctors, nurses, equipment, and wheelchairs
- A supply chain model’s vehicles and containers
- A warehouse model’s forklift trucks and workers

There are three types of resources: *static*, *moving*, and *portable*.

- Static resources are bound to a specific location, and they cannot move or be moved.
- Moving resources can move independently.
- Portable resources can be moved by agents or by moving resources.

In AnyLogic, the Process Modeling library’s `ResourcePool` block defines each set or pool of resources. Resource units can have individual attributes, and each resource has a graphical diagram where you can add elements such as statecharts, parameters, and functions.

Our model’s resources are the forklift trucks that move pallets from the unloading zone to a pallet rack and then deliver pallets from the rack to the production zone.

1. On the Process Modeling Library palette, drag the `ResourcePool` block onto the `Main` diagram. You do not have to connect the block to the flowchart.
2. Name the block *forklifts*.
3. In the *forklifts* block’s Properties area, click the button create a custom type. This way we create a new type of a resource.

4. In the New agent wizard:
 a. In Agent type name box, type *ForkliftTruck*.
 b. Click Next.
 c. On the next page, in the list in the left part of the wizard, expand the Warehouses and Container Terminals area, and then click the 3D animation figure Fork Lift Truck.
 d. Click Finish.
The *ForkliftTruck* agent type diagram will open and display the animation shape you selected in the wizard.

5. Click the Main tab to open the *Main* diagram.

You will see the *ForkliftTruck* resource type has been selected in the *ResourcePool* block’s *New resource unit* parameter.

6. Modify the *forklifts* block’s other parameters:
a. In the **Capacity** box, type 5 to set the number of forklift trucks in our model.

b. In the **Speed** box, type 1 and choose **meters per second** from the list on the right.

c. In the **Home location (nodes)** area, select the *forkliftParking* node. Click the plus button and then click *forkliftParking* in the list of the model's nodes.
We have defined our resources, but we still need to make sure our model’s flowchart blocks will use them during the simulated processes.

7. In the *storeRawMaterial* block’s Properties area, do the following:
 a. In the Agents move list, select *by resources*.
 b. In the Resource pool list, select *forklifts* to ensure the flowchart block uses the selected resources -- in our case, the forklift trucks -- to move the agents.

8. In the *retrieveRawMaterial* block’s Properties area, do the following:
 a. In the Agents move list, select *by resources*.
 b. In the Resource pool list, select *forklifts*.
 c. In the Transporters and resources section, in the Return home area, click if no other tasks to ensure the forklift trucks return to their home location after they complete their tasks.
If our model’s resources move an agent, Store (or Retrieve) block seizes them, brings to the agent location, attaches to the agent, moves the agent to the cell, and then releases the resources.

9. Run the model.
You will see the forklift trucks pick up the pallets and store them in the storage. After a brief delay, they move the pallets to the forklift truck parking area where the pallets will disappear.
Phase 3. Creating 3D animation

You have now seen many of the features that help make AnyLogic such a powerful modeling tool. But there are others you haven’t touched, and one of the most exciting is 3D animation.

Introducing Camera objects

AnyLogic camera objects allow you to define the view that displays in the 3D window. In essence, the camera object "shoots" the picture that you see.

You can also create several camera objects to show different areas of the same 3D scene or to show a single object from different points of view. If you use more than one camera object, you can easily switch from one view to another at runtime.

1. On the Presentation palette, drag the Camera object on to the Main diagram so it faces the job shop layout.

2. Drag the 3D Window element on to the Main diagram, and then place it below the process flowchart.
3D Window

In addition to having the option to add several cameras to your model, you can also add several 3D windows that will each display the same 3D scene from a different point of view.

3. Let the camera “shoot” the picture for the 3D window. In the 3D window’s Properties area, click camera in the Camera list.

4. Prevent the camera from shooting the picture from under the floor by selecting the option Limited to Z above 0 from the Navigation type list.

5. Run the model.

When you create a 3D window, AnyLogic adds a view area that allows you to easily navigate to the 3D view at runtime. To switch to this 3D view, click the rightmost control Toggle Developer panel and then select [window3d] from the select view area to navigate list.

The view area expands the 3D window to the model window’s full size.
6. Do one or more of the following to navigate in 3D at runtime:

- To move the camera left, right, forward or backward, drag the mouse in the selected direction.
- To move the camera closer to or further from the scene's center, rotate the mouse's wheel.
- To rotate the scene relative to the camera, drag the mouse while you press and hold ALT and the left mouse button.

7. Choose the view you want to display at runtime, right-click (Mac OS: CTRL+click) inside the 3D scene, and then click **Copy camera location**.
8. Close the model's window.

9. On the camera's Properties area, apply the camera location you selected during the previous step by clicking Paste coordinates from clipboard.

NOTE: If you can’t locate the camera, you can use the Projects tree. It will display camera under the Main agent’s Presentation branch.

10. Run the model to view the 3D view from the new camera position, and then close the model window.
11. Expand the **Space Markup** palette’s **Pedestrian** area and then double-click the **Wall** element’s icon to enable wall drawing mode.

12. Do the following to draw walls around the job shop layout’s working area:
 a. Click the position in the graphical editor where you want to start drawing the wall.
 b. Move the pointer in any direction to draw a straight line, and then click at any point where you want to change direction.
 c. Double-click at the point where you want to stop drawing the wall.

13. Do the following to change the wall’s fill color and texture:
 a. On the wall’s **Properties** area, expand the **Appearance** section.
 b. In the color menu, click **Other colors**.
 c. In the **Colors** dialog, select the color that you want to apply to the wall from the palette or the spectrum.
You can also set a transparency level (use Transparency slider in the Colors dialog) or customize the wall with any provided texture (click the Textures... item in the colors menu).

In this section, we’re using walls to decorate our model. In a later tutorial where we will model the actions of pedestrians at an airport, we will see how walls can also be obstacles.

14. Change the wall’s Line width to 1 pt.

15. Go to the wall’s Position and size section and change the Z-Height to 40.

AnyLogic automatically sets the shape’s height to 20 pixels to ensure it has volume in a 3D view, but we have now increased its height to 40 pixels.

16. Draw another wall between the exits and then change the settings in the second wall’s Properties area to match the first wall.

17. Run the model and view the 3D animation.

You will see that our model’s animation uses randomly colored shapes to represent pallets, but we will correct the problem by creating an agent type that defines a custom animation for pallets.

18. In the sourcePallets block’s Properties area, expand the Agent section and under the New agent list, click the create a custom type link.
19. In the New agent wizard, do the following:

 a. In the Agent type name field, type *Pallet*.

 b. Click Next.

 c. On the next page of the wizard, expand the Warehouses and Container Terminals section in the list on the left, and then click the 3D animation figure *Pallet*.

 d. Click Finish.
AnyLogic creates the *Pallet* agent type and opens the *Pallet* diagram that will display the animation that we selected in the wizard.

20. In the properties of the *Pallet* agent type, expand the **Agent in flowcharts** section, and select **Material Item** from the **Use in flowcharts as** drop-down list. Now agents of the *Pallet* type will have the additional functionality, which may be useful while these agents are processed by Material Handling Library blocks. Specifically, now pallet agents have explicitly defined dimensions (if you expand the **Dimensions and movement** section of the *Pallet* agent type’s properties, you will see the **Length**, **Width**, and **Height** fields.)

Our next step will be to add product animation on top of the pallet animation, but we will first enlarge the view to give us a closer look at the pallet.

21. Using the **Zoom** toolbar, enlarge the *Pallet* diagram to 300%, and then move the canvas to the right and down to view the axis’ origin point and pallet animation shape.
Enlarging or reducing the view

AnyLogic Zoom toolbar lets you enlarge or reduce the view of a graphical diagram:

22. Since the pallet shape appears to be too large and does not fit into the placeholder corresponding to this material item's dimensions, select it by clicking, and change its **Additional scale** to 75%.
23. Add product animation on top of the pallet animation. On the 3D Objects palette, expand the Boxes area, and drag the Box 1 Closed object on to the pallet.

24. Change the box’s Additional scale to 125%.
25. In the box’s **Properties** area, expand the **Position** section, and then change the box’s Z coordinate to 2.

Our change reflects the fact that we want to place boxes on the pallets and each pallet’s height is about 2 pixels.

26. Change the zoom level back to 100% by clicking the toolbar’s **Zoom to 100%** button.

27. Return to the **Main** diagram.

If you open the `sourcePallets` block’s **Properties** area, you will see **Pallet** is selected as **New agent**. This block will generate agents of the **Pallet** type.

28. Run the model.

You will see pallet shapes have replaced the multicolored shapes. However, if you zoom in the 3D scene, you will notice that the forklift trucks aren’t transporting pallets. We will correct this problem by moving our model’s pallet animation in a way that allows the forklift trucks to pick up the pallets.

29. In the **Projects** view, double-click the **ForkliftTruck** agent type to open its diagram and then move the `forkliftWithWorker` figure one cell to the right.
30. Run the model and you will see that animation shapes are now in the correct locations, and pallets are aligned with the forklift trucks’ forks.

However, when the pallets with products are stored in the storage cells, they are visualized not with 3D models, but with randomly colored cubes. This happens because the storage by default is set to optimize its performance by using primitive shapes to animate the stored items.

31. To change this, select the storage in the graphical editor, then expand the Appearance section of its properties, and set the Occupied cells animation setting to agent animation.

32. Run the model and you will see that the items stored in the storage are visualized using the chosen 3D models.
Phase 4. Modeling pallet delivery by trucks

In this part of our tutorial, we will add the trucks that deliver the pallets to the job shop. Let’s start by creating an agent type to represent them.

1. On the Process Modeling Library palette, drag the Agent Type element on to the Main diagram.

2. In the New agent wizard, do the following:
 a. In the Agent type name box, type Truck.
 b. Click Next.
 c. On the next page of the wizard, expand the Road Transport section in the list on the left, and then click the 3D animation figure Truck.
 d. Click Finish.

Let’s add two more elements to our network: a node where the trucks will appear and the path that they will follow to the receiving dock.

3. Open the Main diagram,

4. Under the Space Markup palette, drag the Point Node element on to the driveway entry.

5. Name the node exitNode.

6. Draw a Path to connect the exitNode to the receivingDock.
7. Create another process flowchart to define the truck movement logic by connecting the Process Modeling Library blocks in the following order:

- The **Source** block generates a truck.
- The first **MoveTo** block drives the truck to the job shop entrance.

 MoveTo flowchart blocks move agents to new locations in the network. If resources are attached to the agent, they will move with it.
- The **Delay** block simulates pallet unloading.
- The second **MoveTo** block drives the truck away.
- The **Sink** block removes the truck from the model.

8. Name the **Source** block `sourceDeliveryTrucks`.

9. In the `sourceDeliveryTrucks` block’s Properties area, do the following to have a new agent of the custom **Truck** type arrive to the driveway entry once per hour at a specific speed:
 a. In the Arrivals defined by list, click Interarrival time.
 b. In the Interarrival time box, type 1, and select hours from the list on the right.
 c. In the First arrival occurs list, click At model start. The first truck will appear right at the model start, and we will not have to wait for it for one hour of model time.
 d. In the Location of arrival list, click Network/GIS node.
e. In the Node list, click exitNode.

f. In the Speed box, type 40, and select kilometers per hour from the list on the right.

g. In the New agent list inside the Agent section, click Truck.

10. Name the first MoveTo block drivingToDock.

11. In the drivingToDock block’s Properties area, in the Node list, click receivingDock to set the agent’s destination.
12. Rename the Delay block to *unloading*.

13. In the *unloading* block’s Properties area, do the following:
 a. In the Type area, click *Until stopDelay() is called*.
 b. In the Agent location list, click *receivingDock*.
The operation’s duration depends on how quickly the pallets are unloaded and removed by forklift trucks. We will consider this operation complete when the Store block has finished storing pallets, and we will model this by changing the Delay block’s operating mode.

Programmatically controlling the delay time

You will typically specify a Delay time for the Delay block’s operation. It can be a fixed duration such as five minutes or a stochastic expression that produces a delay time such as \(\text{triangular}(1, 2, 6) \).

You can also programmatically control the operation’s duration and stop the delay when necessary by calling the block’s corresponding function. If you need to stop waiting for all agents that are in the Delay, call the block’s function `stopDelayForAll()`. Another function -- `stopDelay(agent)` -- ends the operation and releases the specified agent.

14. Name the second MoveTo block `drivingToExit`.

15. In the `drivingToExit` block’s Properties area, in the Node list, click `exitNode` to set the destination node.

Our model’s two Source blocks generate two agent types: the trucks that appear each hour and the pallet that is generated every five minutes. Since we want pallets to appear when the truck unloads, we will change the arrival mode for the Source block that generates them.
Controlling agent generation

You can have the Source block generate agents at set intervals by setting the block’s Arrivals defined by parameter to Calls of inject() function. You will be able to control the agent creation at runtime by calling the block’s function `inject(int n)`. This function generates the given number of agents at the time the call occurs. You set the number of agents that the block will generate by using a function argument such as `sourcePallets.inject(12)`.

16. In the `sourcePallets` block’s Properties area, in the Arrivals defined by list, click Calls of inject() function.

17. Do the following to have the `sourcePallets` block generate pallets when a truck enters the unloading block:
 a. In the unloading block’s Properties area, expand the Actions section.
 b. In the On enter box, type the following:

   ```
   sourcePallets.inject(60);
   ```

 Our model will generate 60 pallets each time a truck starts to unload.
18. In the storeRawMaterial block’s Properties area, expand the Actions section, and in the On exit box, type the following:

```java
if( self.nWaitingForResource() == 0 )
unloading.stopDelayForAll();
```

In this example, `self` is a shortcut we use to refer to the block storeRawMaterial from its own action.

If there are no pallets waiting for resources to perform the delivery to the storage, the unloading block’s delay time ends (in other words, `stopDelayForAll()` is called), and the truck leaves the unloading block and enters the next flowchart block, drivingToExit.

19. Run the model.

20. If the truck is aligned incorrectly as in the figure above, do the following to fix it.

 a. In the Projects tree, double-click the Truck agent type to open its diagram and view the truck animation figure.

 b. In the graphical editor, select the truck shape and then use the round handle or the Rotation Z,° property in the shape’s Position properties area to rotate the truck to -180 degrees.
We have changed the truck figure's position, but we will also need to change AnyLogic default setting to make sure the program doesn’t rotate it a second time.

21. Do the following to change AnyLogic default setting:

 a. In the Projects view, click Truck.

 b. In the Truck agent type’s Properties, expand the Dimensions and movement area.

 c. Clear the Rotate animation towards movement check box.

22. Open the Main diagram.

23. To ensure the pallets are correctly positioned in the receivingDock network node, open the Space Markup palette, and drag an Attractor into receivingDock. Let it face the entrance.
Attractors allow us to control agent location inside a node.

- If the node defines the destination that our agents move toward, attractors define the exact target points inside the node.
- If the node defines the waiting location, attractors define the exact points where agents will wait inside the node.

Attractors also define the agent animation’s orientation while the agent waits inside the node. Here we use attractor for this particular purpose.

You can add attractors by dragging them individually on to the Main diagram, but if attractors form a regular structure, you should use the special wizard to add several attractors at the same time. The wizard offers several different creation modes as well as the option to clear all attractors, and you can display it by clicking the Attractors button in a node’s Properties area.

24. Run the model to check the truck behavior.

The animation should work as we expect.
Phase 5. Modeling CNC machines

In this part of our tutorial, we will simulate the CNC machines that process raw materials. We will start by marking up the space and using point nodes to define the CNC machine locations.

1. On the Space Markup palette, drag the Point Node element on to the job shop layout, and name it nodeCNC1.

2. Copy this node to mark up the space for the second CNC machine.

 AnyLogic will name the second node nodeCNC2.

We will need to create paths to connect both nodes to our network. Our model’s forklift trucks will need them to reach the CNC machines.

3. On the Space Markup palette, click the Path element and draw paths as shown in the figure below.

 NOTE: Make sure the paths that you draw connect the nodeCNC1 and nodeCNC2 to the network. You can test a path’s connection by selecting it with a click. If the path is connected to the network, its end points will be highlighted in cyan.
A CNC machine is a resource unit, and we will add it to our model by creating a resource type and using the ResourcePool block to define the resource pool.

5. In the ResourcePool block’s Properties area, do the following:
 a. In the Name box, type cnc.
 b. In the Resource type list, click Static to reflect the fact this is a static resource.
With our resource pool complete, we're ready to create a new resource type.

6. Under the New resource unit list, click the create a custom type link.

7. In the New agent wizard, do the following:
 a. In the Agent type name box, type CNC.
 b. Click Next.
 c. On the next page of the wizard, expand the CNC Machines section, and select CNC Vertical Machining Center 2 State 1.
 d. Click Finish.

8. Close the new CNC type’s diagram and return to the Main diagram.

9. In the cnc ResourcePool block’s Properties area, do the following to place two CNC machines at the places defined by our point nodes, nodeCNC1 and nodeCNC2.
 a. In the Capacity defined list, click By home location.
 The By home location option sets the number of resources equal to the number of home location nodes that you set for this resource pool.
 b. Click the plus button and then add nodeCNC1 and nodeCNC2 into the Home location (nodes) list.
 After you have added the nodes, the list should resemble the figure below.
We are ready to modify the flowchart which defines the pallets’ behavior by adding a Seize block that will seize a CNC machine. Later, a Delay block will simulate a CNC machine’s processing of raw materials and a Release block will release a CNC machine so it can process the next pallet’s raw material.

10. In the flowchart that defines the pallets’ behavior, drag the retrieveRawMaterial and sink blocks to the right to make space for a new block.

11. On the Process Modeling Library palette, drag the Seize block, and insert it in the pallets’ flowchart after the retrieveMaterialInStorage block.
12. In the **Seize** block’s **Properties** area, do the following:
 a. In the **Name** box, type *seizeCNC*.
 b. Under the **Resource sets** option, click the plus button +, and then click *cnc*.

Completing this step ensures the **Seize** block will seize one resource from the *cnc* resource pool.

13. In the **retrieveRawMaterial** flowchart block’s **Properties** area, do the following:
 a. In the **Destination is** list, click: **Seized resource unit**.
 b. In the **Resource** list, click *cnc*.

This block will simulate how the pallets are transported to the seized CNC machine rather than the forklift trucks’ parking zone.

14. Do the following to simulate the CNC machine’s processing of raw materials:
 a. Add a **Delay** block, place it immediately after **retrieveRawMaterial**, and name it *processing*.

15. In the **Delay** block’s **Properties** area, do the following:
 a. In the **Delay time** box, type *1* and select **minutes** from the list on the right.
 b. Select the **Maximum capacity** check box to allow the machines to process several pallets.

Each agent that arrives to the **Delay** block must have one of our model’s two CNC machines.

16. On the **Process Modeling Library** palette, drag the **Release** block on to the pallets’ flowchart and place it after the *processing* block.
17. Name this Release block releaseCNC.

If you run the model, you will see that while the processes are simulated correctly, the animation draws a pallet in the middle of the CNC machine shape. This occurs when the CNC machine and the pallet it is processing both use the same point node as the animation location. To resolve the problem, we will need to shift the CNC machine to the right and rotate it to face the pallet.

18. In the Projects view, double-click the CNC agent type to open its diagram.

19. Move the animation to the right and rotate the CNC machine shape by using the round handle or setting the figure’s Rotation property to 90 degrees.

We’re ready to use two similar 3D animation shapes to animate the CNC machine: one shape will represent the idle machine and the other will represent the machine as it processes the raw materials. We will define dynamic values for each shape’s Visible property that will allow our model to use the CNC machine’s state to determine which shape the model will display at runtime.

20. Do the following to change the CNC animation shape’s visibility setting:

 a. Select the CNC animation shape.

 b. Hover your mouse over the static property icon that displays next to the Visible label and click Dynamic value.
The icon changes to a dynamic property's icon and a box where you can define the value’s dynamic expression displays. You can use the box to enter Java expression that returns a true or false value.

c. In the box, type `isBusy()`.

This standard function for an AnyLogic resource returns true when the resource is busy. In our case, the function will make the 3D animation shape display when the CNC machine is processing raw materials.
Dynamic properties

When you define an expression for a property's dynamic value, our model will reevaluate the expression on every animation frame during runtime, and then use the resulting value as the property's current value. Providing dynamic values for a shape's position, height, width, or color allows AnyLogic users to animate their models.

If you do not enter a dynamic value, the property retains the default static value throughout the simulation.

- Flowchart blocks can have:
 - **Static properties** that retain the same value throughout the simulation unless a `set_property/Name(new value)` function changes it.
 - **Dynamic properties** whose value is reevaluated each time a new agent enters the block.
 - **Code properties** that allow you to define actions that will be executed at a key moment in the flowchart block such as the On enter action or On exit action. In most cases, you will find code properties in a flowchart block's Properties area, in the Actions section.

- The small triangle at the parameter icon shows that you can click the icon and switch between static value editor and the field where you can enter the value's dynamically reevaluated expression.

21. Do the following to add one more animation shape that will be visible only when the CNC machine is not processing raw materials.

 a. Open the 3D Objects palette that has AnyLogic ready-to-use 3D objects.

 b. Expand the CNC Machines area and drag the CNC Vertical Machining Center 2 State 2 shape onto the CNC diagram.

 c. Rotate the shape and place it directly on top of the first animation figure.

 d. In the Visible box, switch to the dynamic value editor, and type `isIdle()` as the dynamic expression for the shape's Visible property.
22. Expand the 3D Objects palette’s People section and drag the Worker shape on to the CNC diagram.

23. Finally, make the network invisible at runtime. Open the Main diagram. Select the network and set its Visible property to no.

 TIP: Remember that your first click will select the network element and your second click will select the network.

24. Run the model and observe the process.

 You will see how forklift trucks transport pallets to CNC machines for processing. You should also see animated CNC machines, changing 3D shapes depending on their state.
We have finished our simple model that simulates the manufacturing and shipping process in a small job shop. You now have a basic knowledge of AnyLogic resources and how to work with them. You also know how to use a flowchart constructed from Process Modeling Library blocks to define process logic.

Your next step might be to model how the pallets with the finished parts are moved to another storage area at the shipping dock where they will stay until they are shipped. You have already used the blocks that you will need to model this part of the process, so you may want to try adding this logic on your own.

The next exercise will also use a process-centric flowchart, but this time it will be a pedestrian model that we will discuss in another chapter.
Pedestrian modeling

Pedestrian traffic simulation is an important part of constructing, expanding, or redesigning facilities such as shopping centers, airports, railway stations, and stadiums. These analyses can help architects improve their designs, facilities owners review a potential change to a building, and civil authorities simulate possible evacuation routes. Since pedestrian flows can be complex, they require a full-blown simulation.

Pedestrians follow basic rules that have been determined by detailed theoretical studies; they move at predetermined rates, they avoid physical spaces such as walls as well as other people, and they use information about the crowds that surround them to adjust their distance and speed. The results have been proven many times in field studies and customer applications.

You can create metrics such as the total travel time between specified points and vary your experiments to highlight these metrics during times of peak congestion. Finally, you can import background layouts, floor plans, and maps and create multiple 3D views that will make your pedestrian flow analysis easier to understand.

AnyLogic can help you solve these pedestrian traffic problems:

• Time and throughput calculation. Assume you’re designing a supermarket, a subway or railway station, or an airport building. If your goal is to create a layout that minimizes travel time and ensures pedestrian flows don’t interfere with each other, an AnyLogic simulation can easily test for normal, special, or peak volume conditions.

• Pedestrian traffic impact analysis. Managers of high-traffic areas such as theme parks, museums, and sports stadiums can use a simulation to understand how changes such as a new kiosk or a relocated advertising panel will affect their operations, pedestrian travel times, and the customer experience.

• Evacuation analysis. The increased frequency of natural and man-made disasters makes it important to assess and optimize evacuation plans. Emergency event modeling can help emergency management agencies develop effective evacuation plans that save lives.
Airport model

Let's build a model that simulates how passengers move within a small airport that hosts two airlines, each with their own gate. Passengers arrive at the airport, check in, pass the security checkpoint and then go to the waiting area. After boarding starts, each airline’s representatives check their passengers’ tickets before they allow them to board.

We will use a six-phase approach to develop our model. In the final phase, you will learn how to read the database’s flight data (available in a Microsoft Excel spreadsheet) and configure pedestrians by assigning flight information to them.
Phase 1. Defining the simple pedestrian flow

In our first phase, we will use AnyLogic Pedestrian Library to create a simple model of an airport where passengers arrive and then move to the gate.

Pedestrian Library

- Traditional modeling methods such as discrete event and queuing may not work well in areas with high amounts of pedestrian movement.
- AnyLogic Pedestrian Library simulates pedestrian flows in “physical” environments by allowing you to create models of buildings and areas with large numbers of pedestrians such as subway stations, security checkpoints, and streets.
- Your model’s pedestrians move in continuous space while they react to obstacles and one another. This allows you to collect data about a given area’s pedestrian density, ensure acceptable performance levels for service points with a hypothetical load, estimate how long pedestrians will stay in specific areas, and detect potential problems that interior changes such as adding or removing obstacles may cause.

In most cases, you will start to create a pedestrian dynamics model by adding the simulated building’s layout and then drawing walls over it.

1. Create a new model and name it *Airport*. Select minutes as the model time units.
2. Drag an Image from the Presentation palette on to the *Main* diagram.
3. Choose the image file you want to display. In this example, you will select the *terminal.png* image file from *AnyLogic folder/resources/AnyLogic in 3 days/Airport*.
4. On the Main diagram, place the image in the blue frame’s lower left corner. If the image is distorted, click the Reset to original size button and then select the Lock checkbox to lock the image shape.

We will now use a set of space markup shapes from AnyLogic Pedestrian Library palette to define our pedestrian model’s space. You can use space markup shapes to draw walls, services (locations such as turnstiles and ticket offices where pedestrians receive services), and waiting areas.
Space markup shapes for pedestrian models

The Pedestrian Library palette’s Space Markup section

We will use walls – objects within our model’s simulated space that pedestrians cannot cross – to start creating our model. In simple terms, we’re about to use the three markup shapes below to place “AnyLogic walls” on top of the walls that appear in our image.

Walls

- **Wall** – Use this shape to draw exterior and interior walls.
- **Rectangular Wall** – Use this shape to draw rectangular areas such as working spaces that aren’t accessible by pedestrians.
- **Circular Wall** - Use this shape to draw circular obstacles such as columns, pools, and fountains.
5. Use the **Pedestrian Library** palette to draw the airport’s walls. Double-click the **Wall** element you will find in the **Pedestrian Library** palette’s **Space markup** section and then draw the wall around the airport building’s border by clicking your mouse each time you want to add a point. When you’re ready to set the wall’s final point, double-click your mouse.

Let’s change our wall’s appearance by choosing a new color and height.

6. Navigate to the wall’s properties and then select the **Color**: *dodgerBlue* in the **Appearance** section.
Now that we have defined the building's walls and chosen their color, we will use the special *Target Line* space markup element to ensure our model's pedestrians appear at the airport entrance and then move toward the gate.

Target line

In a pedestrian dynamics model, the *Target Line* element defines the locations where pedestrians appear in the simulated space, where they wait (though *areas* typically define waiting locations), and their destination.

7. Define the location where your model's passengers appear by dragging the *Target Line* element from the Pedestrian Library palette on to the graphical diagram, as shown in the figure below.

8. Name the target line *arrivalLine*.

9. Define a second target line that passengers will move toward after they enter the airport, place it in the gate area as shown in the figure below, and then name it *gateLine1*.
Your model’s target line elements and space markup shapes must lie inside the walls. If any of your model’s space markup shapes touch a wall, the “Exception during the discrete event execution: Unreachable target...” error message may display at the model runtime.

We have marked the space that defines our simple pedestrian model, and we will now use a flowchart to define the model's process logic.

Defining pedestrian flow logic using Pedestrian Library flowchart blocks

You will use a flowchart to define the processes that take place in your pedestrian dynamics models. Your model's pedestrians pass through a flowchart and perform the operations defined by the blocks.

The most important Pedestrian Library blocks are:

- **PedSource** – This block generates pedestrians much like Source generates agents in a regular Process Modeling Library flowchart. You will typically use this block as your pedestrian flow's starting point.

- **PedGoTo** – This block makes pedestrians go to a specified target.
PedService – This block simulates how pedestrians receive services at service points.

PedWait – This block causes pedestrians to wait for a given time in a specified location.

PedSelectOutput – This block uses specified conditions to route incoming pedestrians to several routes or processes.

PedSink – This block disposes pedestrians and is usually the pedestrian flow’s end point.

10. Start by dragging the PedSource block from the Pedestrian Library palette on to our Main diagram.

11. Since we want passengers to arrive randomly at an average rate of 100 passengers per hour, go to the pedSource block properties and then type 100 in the Arrival rate box.
12. Specify the location where the passengers appear in the simulated system by clicking `arrivalLine` in the `Target line` list.

13. Add a `PedGoTo` block to simulate pedestrian movement to the specified location and then connect it to `pedSource`. Since we want our passengers to go to the gate, name the block `goToGate1`.

To connect the blocks, add a new block from the palette on to the graphical diagram and place it near another block.

14. Specify the movement destination by selecting `gateLine1` from the `Target line` combo box.
15. Add a PedSink block to discard incoming pedestrians. Pedestrian flowcharts typically start with a PedSource block and end with a PedSink block.

Your flowchart should resemble the figure above.

16. Run the model. In the 2D animation, you will see the pedestrians move from the airport entrance to the gate.
Phase 2. Drawing 3D animation

Let’s add 3D animation to our model by adding 3D-specific elements (3D window, camera) and a 3D model of a passenger. We will start by assigning a custom 3D animation shape to the passenger, a decision which means we need to create a custom Pedestrian type.

- If you want to add 3D animation, custom attributes, or collect statistics for pedestrians, you must create a custom pedestrian type.

1. From the Pedestrian Library palette, drag the Pedestrian Type element on to the Main diagram.

2. In the New agent wizard, enter the new pedestrian type’s name – Passenger – and then click Next.

3. On the Agent animation page, select the General list’s first item: Person, and click Finish.

4. After the Passenger diagram opens, return to the Main diagram.
5. From the Presentation palette, drag the Camera on to the Main diagram and place it so it faces the terminal.

6. Drag the 3D Window on to the Main diagram and place it below the terminal layout image.
7. Open the 3D Window properties, and then select camera from the Camera list.

8. We want our flowchart block pedSource to create pedestrians of our custom Passenger type. Open the pedSource properties, and then select Passenger from the New pedestrian box in the Pedestrian section.
9. Run the model, and you will see pedestrians move from the entry to the gate inside the building. You can switch to a 3D view by clicking the **Toggle Developer panel control** and then selecting [window3d] from the **select view area to navigate list**.

You can use your computer mouse to navigate in 3D at runtime.

Navigation in 3D scene

- **Move the camera, left, right, forward or backward** by dragging the mouse in the selected direction.

- **Move the camera closer or further from the scene's center** by rotating the mouse's wheel.

- **Rotate the scene relative to the camera** by dragging the mouse while the ALT key and the left mouse button are being pressed.

10. Navigate the scene to get the best view, right-click (Mac OS: CTRL+click) inside the 3D scene, and then click **Copy camera location**.

11. Close the model's window, open the camera’s properties, and then apply the optimal camera you selected during the previous step by clicking **Paste coordinates from clipboard**.
If you can’t locate the camera, use the **Projects** tree to locate it. You will find it under the **Presentation** branch of the airport’s *Main* agent.

12. Run the model a second time and view the 3D view that the new camera position provides.
Phase 3. Adding security checkpoints

In this third phase, we will start modeling the processes that take place inside the airport by adding security checkpoints. All of the security checkpoints are service points.

Services in pedestrian models

In pedestrian flow simulations, services are the objects – such as turnstiles, cash desks, ticket windows, and ticket machines – where pedestrians receive services. If a service is in use, the other pedestrians will wait in line until it is available.

You will need to complete a two-step process to define the services your model’s pedestrians will use. The first of these two steps is to use the **Service with Lines** and **Service with Area** markup shapes to draw your pedestrian model’s services.

- **Service with Lines** – This markup shape defines a service such as a turnstile or a checkout area where pedestrians wait in a line until the service is available.

- **Service with Area** – This markup shape defines a service such as a ticket office or a bank office with an electronic queue where pedestrians wait in a neighboring office area until the service is available.

After you have drawn your model’s services, you will define the pedestrian flow logic by adding the Pedestrian Library’s **PedService** block to the flowchart.

We will add five security checkpoints, which means we will add five services and five individual queues for each service point.

1. Drag the **Service with Lines** element from the Pedestrian Library palette on to the terminal layout. By default, a service will have two service points and two queue lines that lead to the service points.
2. Open the Service With Lines properties area, use the Name box to name the shape *scpServices* - in this case, “scp” stands for security checkpoints - and then change the Type of service to *Linear*.
After you change the service type from a point service to a linear service, the service shapes will change from points to lines.

Linear and point services in pedestrian models

A pedestrian service can be a linear service or a point service.

- In a *linear service* like a turnstile, pedestrians continually move from the line’s starting point to the line’s ending point.

- In a *point service* like a ticket window, the pedestrian services occur at a specific point where pedestrians wait for the given delay time.

We’re using a linear service to ensure our model’s passengers walk along the service line and pass through the security check’s metal detector. Now, we will make sure the linear service point vertically crosses the space holder that represents the metal detector.

3. Use the round handle above the shape's center to rotate the service.

4. Move the service in a way that ensures the first linear service crosses the rectangle that represents the metal detector frame.
How to move elements ignoring the grid

If you want to move an element without automatically aligning the element to the grid, press and hold down ALT as you move the element or use the toolbar’s Enable/Disable Grid button to disable the grid.

5. Select the next service line.

Complex space markup shapes

Complex space markup shapes are made up of several component shapes. For example, the Service with Lines shape is made up of Service and Queue Line space markup shapes, while the Service with Area shape is made up of the Service shape(s) and the Polygonal Area.

You will need to pay close attention to these rules as you work with complex space markup shapes:
• Your first click will select the full complex space markup shape (*Service with Lines*).

• After you select the complex space markup shape, you can click any component shape to select it (*Service* or *Queue Line*).

6. Accurately place the service line on top of the second security checkpoint placeholder and then adjust the queue location.

![Diagram of a security checkpoint with a service line and queue]

7. Navigate to the *Service with Lines* shape’s properties and then change both the *Number of services* and *Number of lines* to 5.

8. If necessary, adjust the new service and queue lines. After you have completed this step, the service shapes should look like those in the figure below.

![Diagram showing adjusted service shapes]

Now that we have drawn the services, we will add them to our model’s logic. We will use a special *Pedestrian Library* block named *PedService* to simulate how passengers move through our security checkpoint services.

9. Add the *PedService* block on to the flowchart between the *PedSource* and *PedGoTo* blocks to make pedestrians pass through the service we defined using the referenced Service with Lines shape, and then name it *securityCheck*.
10. Go to the securityCheck block’s properties. Select the services scpServices as Services.

11. Since we assume it takes between 1 to 2 minutes to pass through the security checkpoint, type uniform(1, 2) minutes as the Delay time.

12. Now let’s add 3D models of the security checkpoints. Using the 3D Objects palette, Airport section’s Metal Detector and XRay Scanner elements, draw five security checkpoints. You will see the message box, prompting you to change the scale of 3D object. Select the option Do not ask me again and click OK.
13. Run the model. You will see that passengers are now scanned at the security checkpoints.
Phase 4. Adding check-in facilities

We're ready to simulate the airport’s check-in facilities in a way that represents the several ways passengers can check in for their flight.

1. Draw check-in locations with another Service with Lines shape. This time we will need four service points, and one "serpentine" queue (the one with belt barriers that is common in areas where passengers check in for their flights).

2. Name the services checkInServices. Place the shape in the location shown in the figure below. To make the line look like what you see on the figure, move the line to the required location, and then place the end point where the line starts turning.
3. Add more salient points to the line. Right-click the queue line and choose **Add points** from the pop-up menu. Add more points by clicking where you want to place the line’s salient points. Finish drawing the line by double-clicking. Finally you should get the queue line of the following form:

4. In the properties of this **Service with Lines** shape, change the **Type of queue** to **Serpentine**. Use this option to simulate serpentine (also named "zigzag") queues. You will see that the queue has borders now. In 3D animation they will appear as belt barriers.
5. Add another PedService block and name it checkInAtCounter.

6. In the block’s properties, select the space markup shape checkInServices as Services.

7. Since we assume it takes between 2 to 4 minutes to check in, type \textit{uniform}(2, 4) minutes as the Delay time.
8. Add the PedSelectOutput block to route passengers to different flowchart branches.

9. Connect the checkInAtCounter block to the existing flowchart blocks as shown in the figure below.

How to draw connectors

Your model's flowchart blocks will automatically connect when you place them near one another, but you can also use a connector to manually connect blocks. To draw a connector, double-click the first block's port and then click in another block's port. If you need to add an angle in the connecting line, add it with a click. After you draw the connector, you can add turning points by double-clicking the connector and dragging the points that appear. To remove a turning point, double-click it.

10. Since we are assuming 30 percent of our passengers will check in online and 70 percent will check in at the counter, we will model this behavior by setting pedSelectOutput's Probability 1: to 0.3 and Probability 2: to 0.7. This action will route 30 percent of the passengers to the upper flowchart branch and 70
percent of the passengers to the lower branch. You must set Probability 3, Probability 4, and Probability 5 to 0 to prevent AnyLogic from routing passengers to the block’s lower three output ports.

11. Let's add ready-to-use 3D models to the airport's check-in area. On the Palette’s 3D Objects tab, expand the People section, and then add two copies of both Office Worker and Woman 2 to the diagram.
12. Define the area that is not accessible by passengers. Add the **Rectangular Wall** element from the **Space Markup** section of the **Pedestrian Library** palette and place it as shown in the figure below. In the wall’s properties, set **Visible** to **no** to make this wall invisible at the model runtime.

13. On the Palette’s **3D Objects** tab, select the **Airport** section, and then drag four copies of the **Check In Counter** object onto the diagram. Since the tables aren’t facing the correct direction, use their **Properties** section’s **Position** area to set **Rotation, Z: -90 degrees**.
14. Run the model. You will see some passengers check in and then go through the metal detector.

We want the passengers to wait before they go to the gate. To do this, we need to draw the waiting area where the passengers will wait and then add a flowchart block (**PedWait**) to simulate the waiting.

15. Draw the waiting area before the gates using the **Polygonal Node** element from the **Space Markup** section of the **Process Modeling Library** palette. Switch to the drawing mode and draw the node as shown in the figure below by clicking your mouse each time you want to add a point. When you’re finished, double-click your mouse.
16. Add the PedWait block on to the flowchart between PedService and PedGoTo.

17. Modify the block’s properties by selecting the node from the Area list, and then setting the Delay time to \(\text{uniform}(15, 45) \) minutes.
18. Run the model again, and you will see the passengers now wait in the waiting area before they proceed to the gate.
You can add more check-in facilities on the right and configure the `PedSelectOutput` to separate the pedestrian flow to more branches.

How to simulate automatic check-in machines?
Phase 5. Defining the boarding logic

In this phase, we will simulate the processes that take place at our airport’s gate. The ticket checkpoint that each passenger must pass before they board their plane has one line for business class passengers – who are serviced first – and another for economy passengers. We will add custom information to pedestrians to distinguish business class passengers from economy class passengers.

1. In the Projects tree, open the Passenger agent type diagram by double-clicking the Passenger item.

2. Add a Parameter from the Agent palette to define the passenger’s class. Name it business and set Type: boolean. If the parameter is equal to true, this is a business class passenger, otherwise (if the parameter is false), this is an economy class passenger.

We want to distinguish passengers in 3D animation, namely animate business class and economy passengers with different 3D models. To do this, we will use the existing Person 3D object to represent economy passengers and add another 3D shape to represent business class passengers.

3. Add the 3D object Office Worker to animate a business class passenger and then place the figure on the axis origin point (0,0), right on the Person shape.
4. Change the visibility of these objects. First, click the Office worker shape. We want this shape to be visible only when this is a business class passenger, that is, when its business parameter is true. Switch to the Visible property’s dynamic value editor by clicking the icon to the right of the Visible label, and then type business in the box. By doing this, we’re making this 3D shape visible only when pedestrian’s business parameter is true.

5. Now select the person 3D object (you can do this from Projects tree), and set Visible: ! business. This shape will be visible only if the passenger is an economy passenger.

The symbol ! is the boolean operand NOT. The expression !business returns true when the business is NOT true – when the passenger is not a business class passenger but is an economy passenger.
We want to set up the passengers’ class when they arrive to the airport terminal.

6. Return to the Main diagram and add a Function from the Agent palette. Name it setupPassenger.

7. Configure the function as follows:

- Create one argument to pass the newly created passenger to the function:

 Name: ped

 Type: Passenger

- The function’s code defines the frequency with which the business class passengers appear in the model:

  ```java
  ped.business = randomTrue(0.15);
  ```
In this case, *ped* is the function's argument, of type *Passenger*. Having set up the *Passenger* as the argument type, we can directly access the custom pedestrian field *business* simply as *ped.business*. The function *randomTrue(0.15)* returns *true* in an average of 15 percent of cases, which means an average of 15 percent of our model's passengers will travel in business class.

8. Call this function when a new pedestrian is created by the *pedSource* block. In the *pedSource* properties area, click the arrow to expand the *Actions* section, and then enter the following code in the *On exit* box: *setupPassenger(ped)*;
Here we call our function `setupPassenger` for the newly created pedestrian. This pedestrian is passed to the function via its argument.

Draw two services with lines for the upper gate, one for business class and one for economy passengers.

9. Draw a Service with Line, defining the priority line (point service, 1 service, 1 line). Name this service `business1`.

10. Add one more Service with Line, and name it `economy1`.
11. Draw an area at the gate with the **Rectangular Wall** element. In the wall’s properties, set **Visible** to **no** to make this wall invisible at the model runtime.

12. Drag the **Gate Counter** object from the **Airport** section of the **3D Objects** palette on to the diagram. Expand the **Position** properties section and set **Rotation, Z**: **-90 degrees**. Add two 3D woman models at the counter.

Insert the blocks into the flowchart between the **pedWait** and **goToGate1** blocks.
13. Add **PedSelectOutput** to route business class and economy passengers to different lines.

14. Add two **PedService** blocks: *businessBoarding1* and *economyBoarding1* to simulate the process of checking passengers’ tickets at the gate.

15. Since the **PedSelectOutput** block routes business class and economy passengers to different lines, select **Use: Conditions**, and then type *ped.business* in the **Condition 1** box. This expression will return *true* for all business class passengers, which means they will follow the upper flowchart branch and join the priority line. After you set up the conditions for the block’s next output ports (*true, false, false*), the model will direct all other passengers to the second output port.

16. For the **PedService** block *businessBoarding1*, choose *business1* as **Services**. Since it takes between two to five seconds to check a passenger’s ticket, you can slightly change the **Delay time**.
17. For `economyBoarding1`, set Services: `economy1`, adjust the Delay time.

18. Run the model. You will see passengers pass the checkpoint, and a small number of them will take the priority line.
Phase 6. Setting up flights from MS Excel spreadsheet

In this phase, we will model how airplanes take off at specific times according to a timetable stored in an Excel file.

AnyLogic database

Each AnyLogic model now has a built-in fully integrated database to read input data and write simulation output.

With the database, you can:

- Read parameter values and configure models
- Create parameterized agent populations
- Generate agent arrivals in the process models
- Log flowchart activities, events, statechart transitions, and so on
- View resource utilization, waiting, processing and travel times
- Store and export statistics, datasets, and custom logs
- Export data to MS Excel spreadsheet.

You can easily import the database into your AnyLogic project from external database or spreadsheet. Alternatively, you can create empty database tables and enter data manually.

We will show how to import data from the database.

1. In the Projects view, right-click the Database and select Import database tables... from the pop-up menu.
2. You will see the **Import database tables** dialog box. Select the database you want to import into your project. Click **Browse...** to specify the *Flights.xlsx* file. You will select the file from *AnyLogic folder/resources/AnyLogic in 3 days/Airport*.

![Import database tables dialog box](image)

3. You will see *Sheet1* table added into the **Select table(s) you wish to import** list on the right. Click **OK** to import data from the selected database table into your model.

4. In the **Projects** view, you will see *sheet1* item added under the **Database** item. Double-click it, and you will see the data stored in this table displayed in the table editor. The table contains three columns storing information on the flight’s destination, departure time and gate number.
Now we will create a new agent type: *Flight*.

5. Add an empty agent population of the new *Flight* agent type by dragging the `Agent` element from the `Agent` palette on to the *Main* diagram.

6. In the New agent wizard, do the following:
 b. Select the option *I want to create a new agent type*. Click Next.
 c. Specify Agent type name: *Flight*. The population name will prefill as *flights*. Select the Use database table option and click Next.
d. On the next page of the wizard leave the default settings (we will use data from sheet1 table of the model's built-in database). Click Next.

e. The next page proposes to create parameters destination, departureTime and gate for every agent of the type Flight. That is exactly what we need. Click Next to continue.

f. Since we won’t need to animate flights, select None for the animation.

g. Click Finish.

7. In the Projects view, double-click Flight to open its diagram. On the Flight diagram, you will see three different parameters:

- destination, Type: String.
- departureTime, Type: Date.
- gate, Type: int.

These parameters store the flight’s departure time, destination, and gate number.

8. Add a Collection from the Agent palette on to the Flight diagram, name it passengers, and then set the Collection class to LinkedList, and the Elements class to Passenger. This collection will store the list of passengers that have bought tickets for the flight.
Collections

Collections define data objects that group multiple elements into a single unit to store, retrieve and manipulate aggregated data. They typically represent data items that form a natural group.

9. Now that we have created the Flight agent type, we will add a flight parameter to the Passenger diagram and set the parameter's Type to Flight. This parameter will store the passenger's flight.
10. Return to the *Main* diagram and add a parameter to define the boarding time duration. Name the new parameter *boardingTime*, and then choose Type: Time, Unit: minutes, and Default value: 40.

![Parameter boardingTime](image)

11. Select the function *setupPassenger* that we created earlier to complete our setup process. The function now uses the *random()* function to randomly select the flight that the passenger will take from the list of available flights. The flight is stored in a passenger's parameter *flight*, and AnyLogic adds the passenger to a collection of passengers who are taking the same flight. Modify the code in the Function body section:

```plaintext
ped.business = randomTrue(0.15);
Flight f;

do{
  f = flights.random();
} while (dateToTime(f.departureTime) - boardingTime < time());
ped.flight = f;
ped.passengers.add(f);
```

The function *dateToTime()* converts the given date to model time with respect to the start date, and model time unit settings. The function *add()* adds an element to the collection.
Working with collection contents

You can use the following functions to manage the collection's contents:

- `int size() - Returns the number of elements in the collection.`
- `boolean isEmpty() - Returns true if the collection has no elements, false otherwise.`
- `add(element) - Appends the specified element to the end of this collection.`
- `clear() - Removes all the collection’s elements.`
- `get(int index) - Returns the element at the specified position in the collection.`
- `boolean remove(element) - Removes the specified element from the collection if it is present. Returns true if the list contained the specified element.`
- `boolean contains(element) - Returns true if this collection contains the specified element.`

12. Define the second gate:

- Add two Service with lines elements: `business2` and `economy2`.
- Draw the rectangular wall, gate counter and women figures.
- Draw the Target line `gateLine2`.
13. Add two more PedService blocks, *businessBoarding2* and *economyBoarding2*, that go out of PedSelectOutput and go into PedGoTo. Let PedSelectOutput directs passengers to four different ports.
14. Add another **PedGoTo** block to model how passengers move to the second gate. Select `gateLine2` as the block's Target line.

15. For `businessBoarding2`, set Services: `business2`. For `economyBoarding2`, set Services: `economy2`. For both, set Service time: `uniform(2, 5)` seconds.

16. With our flights set up, we can change the **pedSelectOutput1** conditions that define which gate our passengers select.
Dynamic events

We will now use dynamic events that schedule a model's user-defined actions to schedule departure and boarding actions. A model can have several instances of the same dynamic event scheduled concurrently, and they can be initialized by data that are stored in the event's parameters.

You should use dynamic events in your model:

- When you expect several events, performing similar actions, to be scheduled at the same time.
- When your dynamic event’s action depends on specific information.

NOTE: Since AnyLogic represents a dynamic event as a Java class, your dynamic event’s name should start with an uppercase letter.

17. Add two Dynamic Event elements from the Agent palette on to the Main diagram.

18. The dynamic event *DepartureEvent* schedules a plane’s departure by removing the flight from the agent population that contains upcoming flights. Use the figure below to help you set up the event.
A second dynamic event, *BoardingEvent*, schedules the plane’s boarding and then creates an instance of the dynamic event *DepartureEvent* that schedules the flight to depart in 40 minutes.
You create an instance of a dynamic event by calling the method `create_<DynamicEventName>`. In our case, we’re using the `create_DepartureEvent()` function to create an instance of a dynamic event that we have named `DepartureEvent`.

20. Change the `pedWait` block’s Delay ends parameter from On delay time expiry to On free() function call to ensure passengers who need to wait to board their plane will wait for the announcement in the waiting area.

21. Define a Function `startBoarding` to model the start of the plane’s boarding process. This function iterates through the passengers who are waiting to board for the given flight and allows them to board by ending their delay in the block `pedWait` with the call of the block’s function `free()`.
In this example, we’re using a **For Loop** to go through the *passengers* collection defined inside the *flight*. The passengers who are boarding the plane have to leave the waiting area.
Iterating through a population of agents using “for” loop

The “for” loop’s two forms are the simplest way to have AnyLogic iterate through a population’s agents:

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index-based:</td>
<td>for(int i=0; i<group.size(); i++) {</td>
</tr>
<tr>
<td></td>
<td>Object obj = group.get(i);</td>
</tr>
<tr>
<td></td>
<td>if(obj instanceof ShapeOval) {</td>
</tr>
<tr>
<td></td>
<td>ShapeOval ov = (ShapeOval)obj; ov.setFillColor(red);</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td>Collection iterator:</td>
<td>for(Product p : products) {</td>
</tr>
<tr>
<td></td>
<td>if(p.getEstimatedROI() < minROI)</td>
</tr>
<tr>
<td></td>
<td>p.kill();</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
</tbody>
</table>

22. Define a *planBoardings* function to schedule boarding for all registered flights. The function iterates through the agent population *flights* in the For Loop. It allows flights that are set to take off before their boarding time has elapsed to immediately start boarding. Flights that do not meet this condition will start their boarding process 40 minutes before their departure time as we defined in the *boardingTime* parameter.
The `if` operator checks the specified condition. If the selected flight’s boarding is taking place, we schedule the departure, and allow boarding by calling the `startBoarding` function (passing the reference to this flight as the function argument value). Otherwise, we schedule `BoardingEvent`.

23. In the `Main` agent type’s `Properties` area, expand the `Agent actions` section and then add the call of the `planBoardings()` function in the `On startup` box:

```
Model startup code
```

The model’s `Startup code` executes at the model initialization’s final stage after the model’s blocks are constructed, connected, and initialized. This is a place for additional initialization and starting agent activities such as events.

We need to tie the simulation’s starting point to a specific date within the Excel file that defines the departure time.
24. In the Projects, select Simulation. In the Model time section of the experiment properties, set the database’s flight date as the start date. Set the Start date to 21/12/2014, 12:00:00 (or 12:00:00 PM, depending on your regional format and data format settings). On the Stop list, click Stop at specified date and then set the Stop date to 21/12/2014, 22:00:00 (or 10:00:00 PM).

25. Run the model. You will see passengers wait for the boarding announcement in the waiting area and then go to their gate.

You may find this model more complex than those we covered earlier, especially since we have shown how to use AnyLogic to define custom logic that draws on events, functions, and action charts.

To take the next step in developing your own simulation projects, we encourage you to use AnyLogic Help feature as well as the sample models that each demonstrate a specific modeling technique. As you evaluate AnyLogic, you can use the Get Support button to contact our support team. They’re happy to answer your
questions about AnyLogic and help you address any problems that might occur as you develop your models.
References

Index

3D animation, 159
 navigation, 161
3D window, 159
Agent, 22
Agent-based modeling, 21
Arrival triggered transition, 51
Attractor, 181
Build, 39
Camera, 159
Chart
 time axis format, 64
 time window, 61
Charts, 57
Circular wall, 196
Code completion assistant, 47
Condition triggered transition, 51
Controls, 87
Ctrl+space, 47
Database, 28, 234
Entity, 134
Environment, 37
Evacuation analysis, 192
exponential(), 83
Function, 228
Get Support, 249
Graphical editor, 27
Guard, 70
Internal transition, 68
Locking shapes, 138
Message triggered transition, 51
Model execution modes, 53
Model time, 52
Model time units, 52
Model window, 40
 status bar, 42
Moving resource, 151
New Model wizard, 25
normal(), 84
Palette view, 27
Path, 139
Pause, 41
Pedestrian Library, 194
Pedestrian service
 linear, 211
 point, 211
Pedestrian traffic simulation, 192
Pedestrian Type, 204
PedGoTo, 199
PedSelectOutput, 200
PedService, 200
PedSink, 200, 202
PedSource, 199, 200
PedWait, 200
Plot, 58
Portable resource, 151
Presentation window
 status bar, 42
Problems view, 74
Projects view, 27, 28
Properties view, 27, 38
Queue Line, 212
RackPick, 148
RackStore, 146
Rate, 50
Rate triggered transition, 50
Real time mode, 53
Rectangular Node, 139
Rectangular Wall, 221
Reset perspective, 27
Resource
 moving, 151
 portable, 151
 static, 151
Run, 39
Run from the current state, 41
Running a model, 149
Running the model, 40
Serpentine queue, 216
Service, 212
 linear, 211
 point, 211
 Service with lines, 209
Simulation speed, 53
Sink, 149
Slider, 88
State, 43
Statechart, 43
Statechart entry point, 44
Static resource, 151
Support, 249
Table function, 126
Target line, 198
Terminate execution, 41
Time axis format, 64
Time units, 52
Time window, 61
Timeout triggered transition, 50
Transition
 condition triggered, 51
 guard, 70
 internal, 68
 rate triggered, 50
 timeout triggered, 50
 triangular(), 83
uniform(), 83
uniform_discr(), 84
Virtual time mode, 53
Wall, 197
Welcome page, 24
Z-height, 164

Zigzag queue, 216