Academic articles

Hybrid Simulation Challenges and Opportunities: a Life-cycle Approach


The last 10 years have witnessed a marked upsurge of attention on Hybrid Simulation (HS). The majority of authors define HS as a joint modelling approach which includes two or more simulation approaches (mainly Discrete Event Simulation, System Dynamics and Agent Based Simulation). Whilst some may argue that HS has been in existence for more than 5 decades, the recent rise tended to be more problem driven rather than technical experimentation. Winter Simulation Conference (WSC) 2015, 2016, 2017 have witnessed 3 panels on the purpose, history and definition of HS, respectively. This paper reports on a comprehensive review conducted by the panelists on HS and its applications.

Application of Hybrid Simulation Modelling for the Implementation of Job Rotation in a Feedmill


This paper promotes a unique system dynamics-discrete event simulation hybrid modelling framework. The way the hybrid model is developed is intended to simplify the modelling process and make the framework flexible to a variety of situations. In the current study, the framework is used to investigate the success possibility of introducing within-shift job rotation in the plant and its optimal frequency. The intention is to reduce worker exhaustion and by so doing increase productivity and manufacturing throughput.

Investment Risk Management and Simulation Software for Multi-period Acquisition Planning Under Deep Uncertainty


Acquisition planning involves decisions to be made regarding the number of assets to be acquired initially and the type and timing of replacement and upgrade actions to maintain performance measures efficiently. Acquisition planning is challenging for high-valued assets because of considerable uncertainties in their long-term life cycle. This article proposes an approach to determine which acquisition strategy—i.e. what initial number of assets, what number of new acquisitions, and in what time throughout a long-term planning period—can robustly fulfil multiple performance objectives in the face of plausible future scenarios.

A Simulation-Based Investigation of Freight Transportation Policy Planning and Supply Chains


Regional freight transportation policy planning is a difficult task, as few policy-planners have adequate tools to aid their understanding of how various policy formulations affect this complex, socio-technical system. In this paper, we develop a proof-of-concept model to simulate the impacts of public policies on freight transportation in a simulated region. We use the techniques of multi-disciplinary system design and optimization to analyze the formulation of regional freight transportation policies and examine the relative effects of policies and exogenous forces on the region in order to provide insight into the policy-planning process. Both single objective and multi-objective analysis is performed to provide policy-planners with a clear understanding of the trade-offs made in policy formulation.

Falling Off the Cliff? Increasing Economic Security for Low Income Adults as the Safety Net Shrinks


The public assistance system is supposed to offer a bridge between poverty and self-sufficiency. Families receive benefits such as Temporary Assistance for Needy Families (TANF) or Supplemental Nutrition Assistance Program (SNAP) to soften the impact of loss of income. The programs are intended to be limited in duration and provide a very modest amount of financial support. Some families are fortunate to also receive a housing voucher or a child care subsidy to help offset basic expenses. Eligibility for benefits varies by program and is based on different criteria, most of which are linked to personal income. This study asks: what happens when benefits are cut before individuals reach economic stability? This is frequently called the “benefits cliff.”

Modeling Country-Scale Electricity Demand Profiles


All over the world, and in particular in Germany, a trend toward a more sustainable electric energy supply including energy efficiency and climate protection can be observed. Simulation models can support these energy transitions by providing beneficial insights for the development of different electricity generation mix strategies in future electric energy systems.

Towards Closed Loop Modeling: Evaluatng The Prospects for Creating Recurrently Regrounded Aggregate Simulation Models Using Particle Filtering


Public health agencies traditionally rely heavily on epidemiological reporting for notifiable disease control, but increasingly apply simulation models for forecasting and to understand intervention tradeoffs. Unfortunately, such models traditionally lack capacity to easily incorporate information from epidemiological data feeds.