Academic articles

Dynamic Recovery Policies for Time-Critical Supply Chains under Conditions of Ripple Effect

We consider time critical supply chains in the Australia dairy industry and re-covery policies in the presence of the ripple effect. Ripple effect is the impact of a dis-ruption on supply chain economic performance and disruption-based scope of changes needed in the supply structures and parameters to preserve the resilience. First, we de-scribe the ripple effect in general and one example of the ripple effect in the dairy supply chain in Australia. Second, we present a model for reactive recovery policies in the dairy supply chain under conditions of the ripple effect and exemplify them on a simulation example. The results of this study can be used in future for comparing proactive and re-active approaches to tackling the ripple effect from resilience and flexibility views.

Simulation-based Ripple Effect Modelling in the Supply Chain

In light of low-frequency/high-impact disruptions, the ripple effect has recently been intro-duced into academic literature on supply chain management. The ripple effect in the supply chain results from disruption propagation from the initial disruption point to the supply, pro-duction and distribution networks. While optimization modelling dominates this research field, the potential of simulation modelling still remains under-explored. The objective of this study is to reveal research gaps that can be closed with the help of simulation modelling.

Simulation Model to Control Risk Levels on Process Equipment Through Metrology in Semiconductor Manufacturing

This paper first presents a simulation model implemented to study a specific workcenter in semiconductor manufacturing facilities (fabs) with the objective of controlling the risk on process equipment. The different components of the model, its inputs and its outputs, that led us to propose improvements in the workcenter, are explained. The risk evaluated in this study is the exposure level in the number of wafers on a process tool since the latest control performed for this tool, based on an indicator called Wafer at Risk. Our analysis shows that measures should be better managed to avoid lack of control and that an appropriate qualification strategy is required.

Towards a Virtual Factory Prototype

A virtual factory should represent most of the features and operations of the corresponding real factory. Some of the key features of the virtual factory include the ability to assess performance at multiple resolutions and generate analytics data similar to that possible in a real factory. One should be able to look at the overall factory performance and be able to drill down to a machine and analyze its performance. It will require a large amount of effort and expertise to build such a virtual factory. This paper describes an effort to build a multiple resolution model of a manufacturing cell. The model provides the ability to study the performance at the cell level or at the machine level. The benefits and limitations of the presented approach and future research directions are also described.

Hybrid Simulation in Healthcare: New Concepts and New Tools

Until relatively recently, developing hybrid simulation models using more than one simulation paradigm was a challenging task which required a degree of ingenuity on behalf of the modeler. Generally speaking, such hybrid models either had to be coded from scratch in a programming language, or developed using two (or more) different off-the-shelf software tools which had to communicate with each other through a user-written interface. Nowadays a number of simulation tools are available which aim to make this task easier. This paper does not set out to be a formal review of such software, but it discusses the increasing popularity of hybrid simulation and the rapidly developing market in hybrid modeling tools, focusing specifically on applications in health and social care and using experience from the Care Life Cycle project and elsewhere.

Towards a Guide to Domain-specific Hybrid Simulation

The advantages of combined simulation techniques have been already frequently discussed and are well-covered by the recently published literature. In particular, many case studies have been presented solving similar domain-specific problems by different multi-paradigm simulation approaches. Moreover, a number of papers exist focusing on theoretical and conceptual aspects of hybrid simulation. However, it still remains a challenge to decide, whether combined methods are appropriate in certain situations and how they can be applied. Therefore, domain-specific user guides for multi-paradigm modeling are required combining general concepts and best practices to common steps. In this paper, we particularly outline three major processes targeting to define structured hybrid approaches in domain-specific contexts, and we focus on some practical issues aiming to a sustainable model development. Finally, an example hybrid methodology for problems in healthcare will be presented.

Using Simulation to Assist Recruitment in Seasonally Dependant Contact Centers

The weather is unpredictable and can have a large impact on the profitability of seasonal businesses, particularly if staffing requirements are highly temperature-dependent. In this paper we describe our efforts in developing a what-if analysis tool to assist affected Small and Medium Enterprises in determining the best case scenario for timing hiring new staff and deciding the optimum length of temporary employment contracts.

Hybrid Simulation of Production Process of Pupunha Palm

This work simulated some alternatives of dynamic allocation of additional human resources in a company that produces various products from Pupunha palm. Its goal was to increase the average amount of trays produced per day in this line through a hybrid application of discrete event and agent-based simulation. Two different decision-making forms were proposed to find out which workstation should have received an additional operator. The first proposal was made on the level of occupancy of the operators, while the second one was made on the queue size. The computational model was operationally validated by comparing its results with the actual production data of the company.

Cyber Defense Econometric of a Power Grid Distribution Infrastructure

In collaboration with a Midwest Utility Provider, we developed a cyber defense econometric model via Anylogic that not only simulates the operational process of the Utility's local distribution infrastructure, but also helps to minimize the cost of implementing security. By measuring the economic impact of various cyber attacks affecting disparate components of the distribution infrastructure, it was discovered that both extremes of the paradigm (no security measures implemented vs. securing every device) were unacceptable solutions in regards to protecting the business financially.

Creating and Validating a Microscopic Pedestrian Simulation to Analyze an Airport Security Checkpoint

Aim of this simulation case study is to analyze waiting times and throughput at the security checkpoint of an international medium sized airport. The simulations shall provide the airport operator with the ability to easily change main impact parameters of an airport security checkpoint e.g. to test new security procedures, a flightplan with more passengers and also to optimize the security operation schedule.