Academic articles

Creating and Validating a Microscopic Pedestrian Simulation to Analyze an Airport Security Checkpoint


Aim of this simulation case study is to analyze waiting times and throughput at the security checkpoint of an international medium sized airport. The simulations shall provide the airport operator with the ability to easily change main impact parameters of an airport security checkpoint e.g. to test new security procedures, a flightplan with more passengers and also to optimize the security operation schedule.

Partial Paradigm Hiding and Reusability in Hybrid Simulation Modeling Using the Frameworks Health-DS and I7-Anyenergy


Many complex real-world problems which are difficult to understand can be solved by discrete or continuous simulation techniques, such as Discrete-Event-Simulation, Agent-Based-Simulation or System Dynamics. In recently published literature, various multilevel and large-scale hybrid simulation examples have been presented that combine different approaches in common environments.

Marine Logistics Decision Support for Operation and Maintenance of Offshore Wind Parks with a Multi Method Simulation Model


The offshore wind industry in Europe is looking to move further from shore and increase the size of wind parks and wind turbines. As of now marine logistics during the operation and maintenance life cycle phase is, besides wind turbine reliability, the most important limitation for wind turbine service, repair and replacement, and pose a large risk for wind park operators and owners.

A Multi-Paradigm Modeling Framework for Modeling and Simulating Problem Situations


This paper proposes a multi-paradigm modeling framework (MPMF) for modeling and simulating problem situations (problems whose specification is not agreed upon). The MPMF allows for a different set of questions to be addressed from a problem situation than is possible through the use of a single modeling paradigm.

A Tripartite Hybrid Model Architecture for Investigating Health and Cost Impacts and Intervention Tradeoffs for Diabetic End-stage Renal Disease


Like most countries, Canada faces rising rates of diabetes and diabetic ESRD, which adversely affect cost, morbidity/mortality and quality of life. These trends raise great challenges for financial, human resource and facility planning and place a premium on understanding tradeoffs between different intervention strategies. We describe here our hybrid simulation model built to inform such efforts.

A Hybrid Simulation Model for Large-Scaled Electricity Generation Systems


Due to the transition towards a sustainable energy supply, many electricity generation systems are faced with great challenges worldwide. Highly volatile renewable energy sources play an important role in the future electricity generation mix and should help compensate the phase-out of nuclear power in countries such as Germany. Simulation-based energy system analysis can support the conversion into a sustainable future energy system and are intended to find risks and miscalculations. In this paper we present main components of the electricity generation system models. We use a hybrid simulation approach with system dynamics and discrete event modules. This modular design allows quick model adoptions for different scenarios. Simulation results show the development of the future annual electricity balance, CO2 emission balance, electricty imports and exports, and the wholesale price of electricity.

A Modular Simulation Model For Assessing Interventions For Abdominal Aortic Aneurysms


This paper discusses the development of an individual based simulation of interventions for better treatment of patients with abdominal aortic aneurysms (AAA). The interdisciplinary subject required collaboration of medical doctors, Health Technology Assessment (HTA) experts and modelers.

Prospective Healthcare Decision-Making By Combined System Dynamics, Discrete-Event And Agent-Based Simulation


Prospective Health Technology Assessment allows early decision making for innovative health care technologies. In our recent publications a hybrid simulation approach with System Dynamics and Agent-Based Modeling has been presented. This paper presents a mechanism to generate agents dynamically from SD models and extends the previously presented hybrid approach by process-oriented Discrete Event Simulation for hospital modeling.