AnyLogic is holding an in-depth offline training course in Lisbon, 25-27 of March. Learn from the best!
AnyLogic Training Course in Lisbon
Learn from the best!

Academic articles

On Agent-Based Modeling in Semiconductor Supply Chain Planning


Supply chain (SC) planning in the semiconductor industry is challenged by high uncertainties on the demand side as well as a complex manufacturing process with non-deterministic failure modes on the production side. Understanding the complex interdependencies and processes of a supply chain is essential to realize opportunities and mitigate risks. However, this understanding is not easy to achieve due to the complexity of the processes and the non-deterministic human behavior determining supply chain planning performance. Our paper argues for an agent-based approach to understand and improve supply chain planning processes using an industry example. We give an overview of current work and elaborate on the need for integrating human behavior into the models. Overall, we conclude that agent-based simulation is a valuable method to identify favorable and unfavorable conditions for successful planning.

A Case Study for Simulation and Optimization Based Planning of Production and Logistics Systems


This paper introduces a practical approach for the comprehensive simulation based planning and optimization of the production and logistics of a discrete goods manufacturer. Although simulation and optimization are well-established planning aides in production and logistics, their actual application in the field is still scarce, especially in small and medium-sized enterprises (SMEs). This is largely due to the complexity of the planning task and lack of practically applicable approaches for real-life planning scenarios. This paper provides a case study from the food industry, featuring a comprehensive planning approach based on simulation and optimization. The approach utilizes an offline-coupled multilevel simulation to smooth production and logistics planning via optimization, to optimally configure the production system using discrete-event simulation and to optimize the logistics network utilizing an agent-based simulation. The connected simulation and optimization modules can enhance the production logistics significantly, potentially providing a reference approach for similar industry applications.

Simulation of The Order Process in Maritime Hinterland Transportation: The Impact of Order Release Times


The integration of information systems between the various actors organizing and executing the transport of containers to seaports is slowly progressing. Transport orders are frequently characterized by high change rates causing high manual revision effort for dispatchers. Therefore, these order changes, often received shortly before the day of departure, raise the question regarding the immediate transmission of transport orders to the subsequent actors in the transport chain. This paper analyzes the impact of different order release times, which define the timing of order transmission, on order process efficiency (processing times and costs) using a multi-method simulation approach. In a case study, four actors, two focusing on transport planning and two on operative transport execution, are considered. The simulation experiments with varying order release times and change rates reveal: A late release of orders from planning to operative actors and a reduction of order changes can significantly increase order process efficiency.

Optimizing Home Hospital Health Service Delivery in Norway Using a Combined Geographical Information System, Agent Based, Discrete Event Simulation Model


Home hospital services; provide some hospital level services at the patient’s residence. The services include for example: palliative care, administering chemotherapy drugs, changing dressings and care for newborns. The rationale of the service is that by providing high quality care to patients at their homes their experience of the care is better and hence they respond to the treatment and/or recover quicker and are less likely to need to report to hospital to receive care for more serious/expensive conditions. The aim of this study is to evaluate the effectiveness of the home hospital service, to optimize the current configuration given existing constraints and to evaluate potential future scenarios. Using a combined discrete event simulation, agent based model and geographical information system we assess the system effects of different demand patterns, appointment scheduling algorithms (e.g. travelling salesman problem), varying levels of resource on patient outcomes and impact on hospital visits.

Purpose and Benefits of Hybrid Simulation: Contributing to the Convergence of its Definition


There is a growing trend in the number of M&S studies that report on the use of Hybrid Simulation. However, the meaning and the usage of the term varies considerably. Indeed, the hybrid simulation panel during last year’s conference (WSC2016) laid bare the strong views, from the panelists and audience alike, as to what constitutes a hybrid model and what is new? The ensuing debate set the scene for this year’s paper, in which we discuss the various perspectives on hybrid simulation by focusing on three aspects: its definition, its purpose and its benefits. We hope this paper will pave the way for further studies on this subject, with the objective of achieving a convergence of the definition of hybrid simulation.

Simulation of maintenance strategies in mechanized tunneling


Mechanized tunneling is one of the most common methods used for underground constructions for infrastructure systems. Since a tunnel boring machine (TBM) represents a non-redundant single machine system, the efficiency of maintenance work highly impacts the overall project performance. The wear and tear of cutting tools is a critical, but mostly unknown process. To plan the maintenance work of cutting tools efficiently, it is necessary to know the current tool conditions and adapt the planned maintenance strategies to the actual status accordingly. In this paper, an existing theoretical empiric surrogate model to describe cutting tool conditions will be used and implemented as a software component within a process simulation tool that manages TBM steering parameters. Further, different maintenance setups for TBM cutting tools are presented and evaluated. To prove the capability of the presented approach, a case study will show the effects that improved maintenance work can have on project performance.

Standards based generation of a virtual factory model


Developing manufacturing simulation models usually requires experts with knowledge of multiple areas including manufacturing, modeling, and simulation software. The expertise requirements increase for virtual factory models that include representations of manufacturing at multiple resolution levels. This paper reports on an initial effort to automatically generate virtual factory models using manufacturing configuration data in standard formats as the primary input. The execution of the virtual factory generates time series data in standard formats mimicking a real factory. Steps are described for auto-generation of model components in a software environment primarily oriented for model development via a graphic user interface. Advantages and limitations of the approach and the software environment used are discussed. The paper concludes with a discussion of challenges in verification and validation of the virtual factory prototype model with its multiple hierarchical models and future directions.

Evaluation of discovered clinical pathways using process mining and joint agent-based discrete-event simulation


The analysis of clinical pathways from event logs provides new insights about care processes. In this paper, we propose a new methodology to automatically perform simulation analysis of patients’ clinical pathways based on a national hospital database. Process mining is used to build highly representative causal nets, which are then converted to state charts in order to be executed. A joint multi-agent discrete-event simulation approach is used to implement models. A practical case study on patients having cardiovascular diseases and eligible to receive an implantable defibrillator is provided. A design of experiments has been proposed to study the impact of medical decisions, such as implanting or not a defibrillator, on the relapse rate, the death rate and the cost. This approach has proven to be an innovative way to extract knowledge from an existing hospital database through simulation, allowing the design and test of new scenarios.

Hybrid modeling for vineyard harvesting operations


Hiring workers under seasonal recruiting contracts causes significant variation of workers skills in the vineyards. This leads to inconsistent workers performance, reduction in harvesting efficiency, and increasing in grape losses rates. The objective of this research is to investigate how the variation in workers experience could impact vineyard harvesting productivity and operational cost. The complexity of the problem means that it is difficult to analyze the system parameters and their relationships using individual analytical model. Hence, a hybrid model integrating discrete event simulation (DES) and agent based modeling (ABM) is developed and applied on a vineyard to achieve research objective. DES models harvesting operation and simulates process performance, while ABM addresses the seasonal workers heterogeneous characteristics, particularly experience variations and disparity of working days in the vineyard. The model is used to evaluate two seasonal recruiting policies against vineyard productivity, grape losses quantities, and total operational cost.

Towards airspace rules for future UAS-based delivery


The growth of the nascent UAS industry will be affected by the airspace coordination rules between drones because these rules can impact business profitability. Few analyses have been reported to support design of commercial UAS operations in low-altitude commercial urban airspace. Analysis of minimum horizontal separation is critical for designing safe and efficient UAS delivery systems. In this paper a constructive simulation model is used to analyze and evaluate proposed UAS airspace traffic. A high density of delivery drones could create a bottleneck in a drone-based supply chain very quickly, especially when a high minimum horizontal separation standard is required. This paper proposes a simple idea on how to organize low-altitude UAS traffic, and evaluates the idea using a simulation model. Additional implications and future work needed in relation to UAS-based delivery are also discussed.