Academic articles

Towards Circular Economy Implementation in Manufacturing Systems Using A Multi-Method Simulation Approach to Link Design and Business Strategy


The recent circular economy movement has raised awareness and interest about untapped environmental and economic potential in the manufacturing industry. One of the crucial aspects in the implementation of circular or closedloop manufacturing approach is the design of circular products. While it is obvious that three post-use strategies, i.e., reuse, remanufacturing, and recycling, are highly relevant to achieve loop closure, it is enormously challenging to choose “the right” strategy (if at all) during the early design stage and especially at the single component level. One reason is that economic and environmental impacts of adapting these strategies are not explicit as they vary depending on the chosen business model and associated supply chains. In this scenario, decision support is essential to motivate adaptation of regenerative design strategies. The main purpose of this paper is to provide reliable decision support at the intersection of multiple lifecycle design and business models in the circular economy context to identify effects on cost.

Simulating Recovery Strategies to Enhance the Resilience of a Semiconductor Supply Network


Enhancing supply chain resilience is of vital importance in today’s business to manage and mitigate the risks, especially in the semiconductor industry challenged with intrinsic long cycle times and short product life-cycles. Transferring production from a primary site to an alternative site after a disaster is one of the strategies to ensure resilience of the supply network. In this study, different types of alternative sites with various levels of preparedness are investigated. A discrete-event simulation is used to evaluate their operational and financial impacts under four different disruption scenarios. The simulation outcomes demonstrate unexpected positive benefits of various alternative sites in terms of fast recovery and resilience building.

A Distributed Simulator Platform for Rapid Industrial User Experience Prototyping


The research and development of novel user experience concepts in well-regulated industrial domains face different challenges. Systems in these domains often require backward compatibility and integration with legacy sub-systems and protocols. They must comply with well-defined procedures and standards, and must pass through stringent evaluation processes involving actual users under realistic conditions and scenarios. As a consequence, prototyping and simulations are extensively used. During product development, the level of fidelity of a simulation prototype will directly impact the quality of end-user feedback, minimizing ex-pensive rework of UX in later stages of a project. This paper describes the Distributed Industrial Simulation Platform (DISP), a simulation framework developed within GE that facilitates the rapid prototyping and evaluation of novel industrial UX systems. We present the DISP design and main services showing how it has been used in support of the development and simulation of two UX prototypes in the railroad transpor-tation domain.

Simulation testbed for the analysis of beneficial business strategies for the airbus A350 production ramp-up


The production ramp-up of new aircraft is characterized by high complexity and planning and control chal-lenges caused by complex product design, supply chain and production processes. In the past, this resulted in significant delays and increased costs of the production ramp-up. Novel business strategies and planning and scheduling technologies promise better production control and risk mitigation during the ramp-up phase. The European research project ARUM has developed those business strategies and a new distributed decision support solution based on knowledge processing technologies. A simulation testbed was used to identify the most beneficial business strategies and to evaluate linked control strategies for the industrial use case of the Airbus A350 production ramp-up. This paper discusses the potential of simulations for the business strategy definition and for the validation of linked control strategies from the industrial end-user perspective.

Hybrid Simulation of Production Process of Pupunha Palm


This work simulated some alternatives of dynamic allocation of additional human resources in a company that produces various products from Pupunha palm. Its goal was to increase the average amount of trays produced per day in this line through a hybrid application of discrete event and agent-based simulation. Two different decision-making forms were proposed to find out which workstation should have received an additional operator. The first proposal was made on the level of occupancy of the operators, while the second one was made on the queue size. The computational model was operationally validated by comparing its results with the actual production data of the company.

Jobsite Logistic Simulation in Mechanized Tunneling


Projects in mechanized tunneling frequently do not reach their targeted production performance. Reasons are often related to an undersized or disturbed supply-chain management of the surface jobsite. Due to the sensitive interaction of production and logistic processes, planning and analyzing the supply-chain is a challenging task.

Generic Simulation Model to Optimize Production and Workforce Planning at an Automotive Suppplier


This paper presents a comprehensive simulation project in the area of an automotive supplier. The company produces car styling serial and original accessory parts made from plastic for internal and external applications in passenger cars. For the foaming division, which is identified as the bottleneck, different personnel and qualification scenarios, set-up optimizations and lot-sizing strategies are compared with the current situation. Key performance measures reported are inventory, tardiness and service level. The changes in organizational costs (e.g. employee training, additional employees, etc.), due to the scenarios, are not considered and are traded off with the logistical potential by the company itself. Results of the simulation study indicate that a combination of an additional fitter during night shift, minor reductions of set-up times and reduced lot-sizes leads to an inventory reduction of ~10.6% and a service level improvement of ~8% compared to the current situation.

Utilising dynamic factory simulation to improve unit cost estimation and aid design decisions


Utilising dynamic simulation methods to estimate manufacturing resources, can improve unit cost estimation and aid design decisions. This paper introduces a framework specification that combines Computer Aided Design (CAD), Computer Aided Process Planning (CAPP) and Discrete Event Simulation (DES) technologies.

IRS Post-Filing Processes Simulation Modeling: A Comparison of DES with Econometric Microsimulation in Tax Administration


IRS Office of Research Headquarters measures and models taxpayer burden, defined as expenditures of time and money by taxpayers to comply with the federal tax system. In this research activity, IRS created two microsimulation models using econometric techniques to enable the Service to produce annual estimates of taxpayer compliance burden for individual and small business populations. Additionally, a Discrete Event Simulation (DES) model was developed to represent taxpayer activities and IRS administration in postfiling processes.

Modeling S-Class Car Seat Control with AnyLogic — Daimler-Chrysler Modeling Contest


In this paper we give an overview of the car seat model that was developed for Daimler-Chrysler modeling contest in year 2001 and was awarded the 1st prize. We outline the OO UML-RT based modeling approach that was used and the simulation tool AnyLogic that supports it, and discuss their main advantages with respect to automotive area.


  • 1
  • 2