Academic articles

Sustainable Development in Surgery: The Health, Poverty, and Equity Impacts of Charitable Surgery in Uganda


The recently adopted Sustainable Development Goals call for the end of poverty and the equitable provision of healthcare. These goals are often at odds, however: health seeking can lead to catastrophic spending, an outcome for which cancer patients and the poor in resource-limited settings are at particularly high risk. How various health policies affect the additional aims of financial wellbeing and equity is poorly understood. This paper evaluates the health, financial, and equity impacts of governmental and charitable policies for surgical oncology in a resource-limited setting. Three charitable platforms for surgical oncology delivery in Uganda were compared to six governmental policies aimed at improving healthcare access. An extended cost-effectiveness analysis using an agent-based simulation model examined the numbers of lives saved, catastrophic expenditure averted, impoverishment averted, costs, and the distribution of benefits across the wealth spectrum.

Spare Part Management in a Testing Workshop


Spare part management is essential to many organizations, since excess inventory leads to high holding costs and stock outs can greatly impact operations performance, but it is a major problem in the testing work shop in Robert Bosch China Diesel (RBCD) Wuxi. The workshop is used to test the functionality of the injectors, such as those statistics for pressure, electro conductivity, etc. After implementing the automated tower storage in the work shop, the workshop supervisor applied monthly order policy to purchase spare parts, which means at the end of each month, he/she will check the consumption of last month’s spare parts and make orders according to that data. However, in order to control the inventory of spare parts and achieve minimum total inventory cost of those parts, the (Q, r) model was suggested to make the monthly order, realizing the goal of maximizing the net profit of injectors.

A Multi-Paradigm Modeling Framework for Modeling and Simulating Problem Situations


This paper proposes a multi-paradigm modeling framework (MPMF) for modeling and simulating problem situations (problems whose specification is not agreed upon). The MPMF allows for a different set of questions to be addressed from a problem situation than is possible through the use of a single modeling paradigm.

Quantitative Analysis of Bidding Strategies: A Hybrid Agent Based–System Dynamics Approach


Economic slowdown and construction demand shrinkage reduces the profit backlog for construction contractors and bites into their profit margin. The resulting fierce competition for jobs forces construction companies to look for more sophisticated analytical tools to analyze and improve their bidding strategies. For each contractor, bidding strategy is a decision-making process that is driven by the firm’s financial goals with the final objective of maximizing the firm’s gross profit and surpassing the breakeven point. This paper proposes a methodology to model and analyze different bidding strategies with hybrid agent based-system dynamics (ABSD) simulation.

A Modular Simulation Model For Assessing Interventions For Abdominal Aortic Aneurysms


This paper discusses the development of an individual based simulation of interventions for better treatment of patients with abdominal aortic aneurysms (AAA). The interdisciplinary subject required collaboration of medical doctors, Health Technology Assessment (HTA) experts and modelers.

An Agent-Based Multi-Scale Wind Generation Model


This paper presents an agent-based model for simulating wind power systems on multiple time scales. The aim is to generate a flexible model that allows us to simulate the output of a wind farm. The model is developed using multiparadigm modelling, combining different approaches such as agent-based modelling, discrete events and dynamic systems.

An integrated pedestrian behavior model based on extended decision field theory and social force model


The integrated pedestrian simulation model proposed in this paper allows us to develop a more realistic simulation of pedestrian behaviors at a shopping mall. In particular, consideration of vision of each individual allows us to mimic physical and psychological interactions among the people and the environment more realistically. Similarly, consideration of extended Decision Field Theory allowed us to represent human decision deliberation process. In addition, consideration of a rich set of attributes for the environment as well as people has allowed us to mimic a real shopping mall environment closely. The constructed simulation using AnyLogic software was utilized to conduct several experiments on performance of the mall and scalability of the proposed model.