Academic articles

Towards Closed Loop Modeling: Evaluatng The Prospects for Creating Recurrently Regrounded Aggregate Simulation Models Using Particle Filtering

Public health agencies traditionally rely heavily on epidemiological reporting for notifiable disease control, but increasingly apply simulation models for forecasting and to understand intervention tradeoffs. Unfortunately, such models traditionally lack capacity to easily incorporate information from epidemiological data feeds.

Comparison between Individual-based and Aggregate Models in the context of Tuberculosis Transmission

The desire to better understand the transmission of infectious disease in the real world has motivated the representation of epidemic diffusion in the context of quantitative simulation. In recent decades, both individual-based (such as Agent-Based) models and aggregate models (such as System Dynamics) are widely used in epidemiological modeling. This paper compares the difference between system dynamics models and agent-based models in the context of Tuberculosis (TB) transmission, considering smoking as a risk factor.

Agent-Based Simulation of a Tuberculosis Epidemic

We propose an epidemic agent-based simulation model for disease (TB) transmission dynamics study and to find out the role of various contact networks. Our model simulates the TB epidemic course across a single population and uses a hierarchical network of contacts in three levels, typical to the transmission of airborne diseases (Mossong et al. 2005). Parameters are chosen from the literature, and the model is calibrated to a setting of high TB incidence. We use our model to study the transmission dynamics at an individual level with regard to the timing and distribution of secondary infections from a single source. The average time for disease diffusion to reach 50% of infections at an individual level is estimated, and the timing patterns are compared among different networks. We perform sensitivity analysis of results with regard to multiple parameter values, and discuss the implications for TB control policy.

West Nile Virus System Dynamics Investigation In Dallas County, TX

After its first introduction in 1999, West Nile Virus (WNV) has spread very widely along the east coasts of the United States before appearing in Texas where 1792 cases were reported of which 82 were fatal in 2012. The interesting patterns and behavior of the virus and its amplified impact on the county of Dallas drove this work. This paper encompasses a thorough development of a systems dynamics simulation model of virus's infectious behavior and dynamics in Dallas County, TX utilizing historical data collected and the aid of suitable software packages.

  • 1
  • 2