Academic articles

Simulation-Based Design and Traffic Flow Improvements in the Operating Room


A simulation model was created to model the traffic flow in the operating room. A key research challenge in operating room design is to create the most efficient layout that supports staff and patient requirements on the day of surgery. The simulation allows comparison of base model designs to future designs using several performance measures. To develop the model, we videotaped multiple surgeries in a set of operating rooms and then coded all activities by location, agent and purpose. Our current analysis compares layouts based on total distance walked by agents, as well as the number of contacts, measured as the number of times agents must change their path to accommodate some other agent or physical constraint in the room. We demonstrate the value and capability of the model by improving traffic flow in the operating room as a result of rotating the bed orientation.

Optimizing Home Hospital Health Service Delivery in Norway Using a Combined Geographical Information System, Agent Based, Discrete Event Simulation Model


Home hospital services; provide some hospital level services at the patient’s residence. The services include for example: palliative care, administering chemotherapy drugs, changing dressings and care for newborns. The rationale of the service is that by providing high quality care to patients at their homes their experience of the care is better and hence they respond to the treatment and/or recover quicker and are less likely to need to report to hospital to receive care for more serious/expensive conditions. The aim of this study is to evaluate the effectiveness of the home hospital service, to optimize the current configuration given existing constraints and to evaluate potential future scenarios. Using a combined discrete event simulation, agent based model and geographical information system we assess the system effects of different demand patterns, appointment scheduling algorithms (e.g. travelling salesman problem), varying levels of resource on patient outcomes and impact on hospital visits.

A Distributed Simulator Platform for Rapid Industrial User Experience Prototyping


The research and development of novel user experience concepts in well-regulated industrial domains face different challenges. Systems in these domains often require backward compatibility and integration with legacy sub-systems and protocols. They must comply with well-defined procedures and standards, and must pass through stringent evaluation processes involving actual users under realistic conditions and scenarios. As a consequence, prototyping and simulations are extensively used. During product development, the level of fidelity of a simulation prototype will directly impact the quality of end-user feedback, minimizing ex-pensive rework of UX in later stages of a project. This paper describes the Distributed Industrial Simulation Platform (DISP), a simulation framework developed within GE that facilitates the rapid prototyping and evaluation of novel industrial UX systems. We present the DISP design and main services showing how it has been used in support of the development and simulation of two UX prototypes in the railroad transpor-tation domain.

A structured approach for constructing high fidelity ED simulation


This paper presents a structured approach to building a high-fidelity simulation for an emergency department. Our approach has three key features. First, we use the concept of modules as a building block for modeling. A module is a minimum unit that has clinical or administrative meanings in ED operation, and it consists of low level operational activities. Second, we use a structured template to formally represent modules, and we adopt notations and grammars from the business process modeling notation. This provides an enhanced clarity and transparency, which proves very useful in extracting necessary data from a hospital database or from interviewing ED staff. Finally, we define an interface, specifically data structure and handler, for converting information represented in the modules into simulation languages. This interface makes it possible to seamlessly link the modeling process to the implementation process in the simulation construction.

Hybrid modeling for vineyard harvesting operations


Hiring workers under seasonal recruiting contracts causes significant variation of workers skills in the vineyards. This leads to inconsistent workers performance, reduction in harvesting efficiency, and increasing in grape losses rates. The objective of this research is to investigate how the variation in workers experience could impact vineyard harvesting productivity and operational cost. The complexity of the problem means that it is difficult to analyze the system parameters and their relationships using individual analytical model. Hence, a hybrid model integrating discrete event simulation (DES) and agent based modeling (ABM) is developed and applied on a vineyard to achieve research objective. DES models harvesting operation and simulates process performance, while ABM addresses the seasonal workers heterogeneous characteristics, particularly experience variations and disparity of working days in the vineyard. The model is used to evaluate two seasonal recruiting policies against vineyard productivity, grape losses quantities, and total operational cost.

Towards airspace rules for future UAS-based delivery


The growth of the nascent UAS industry will be affected by the airspace coordination rules between drones because these rules can impact business profitability. Few analyses have been reported to support design of commercial UAS operations in low-altitude commercial urban airspace. Analysis of minimum horizontal separation is critical for designing safe and efficient UAS delivery systems. In this paper a constructive simulation model is used to analyze and evaluate proposed UAS airspace traffic. A high density of delivery drones could create a bottleneck in a drone-based supply chain very quickly, especially when a high minimum horizontal separation standard is required. This paper proposes a simple idea on how to organize low-altitude UAS traffic, and evaluates the idea using a simulation model. Additional implications and future work needed in relation to UAS-based delivery are also discussed.

Analysis of future UAS-based delivery


Commercial use of Unmanned Aerial System (UAS) has the potential to reshape the delivery market and to open new business opportunities to small businesses, e.g., local stores, pharmacies, restaurants, as well as to large international and national businesses and government entities, e.g., Amazon, Google, UPS, power companies, and USPS. Simulation models can examine the value added to current business operations, the effects of radical shifts in current operations, and the formation of new types of businesses. This paper presents an envisioned future UAS delivery business operation models and develops a theoretical constructive simulation model. The conducted simulation analysis based on full factorial design estimated causalities between multiple independent and dependent business and policy factors e.g. drone velocity, flying altitude, number of drones, delivery demand, route type, maximum drone fly-time, number of orders completed, time average drone density, order time, drone utilization, and reachability of customers.

Hospital processes within an integrated system view: a hybrid simulation approach


Processes in hospitals or in other healthcare institutions are usually analyzed and optimized isolated for enclosed organizations like single hospital wards or certain clinical pathways. However, many workflows should be considered in a broader scope in order to better represent the reality, i.e., in combination with other processes and in contexts of macro structures. Therefore, an integrated view is necessary which enables to combine different coherences. This can be achieved by hybrid simulation. In this case, processes can be modeled and simulated by discrete simulation techniques (i.e., DES or ABS) at the meso-level. However, holistic structures can be comfortably implemented using continuous methods (i.e., SD). This paper presents a theoretical approach that enables to consider reciprocal influences between processes and higher level entities, but also to combine hospital workflows with other subjects (e.g., ambulance vehicles).

An agent-based framework to study occupant multi-comfort level in office buildings


With the trend towards energy efficient buildings that diminish fossil fuel usage and carbon emissions, achieving high energy performance became a necessity. Allowing occupants to be actively involved during the design and operation phases of buildings is vital in fulfilling this goal without jeopardizing occupant satisfaction. Although different occupant behavior types were considered in prior research efforts, recent tools did not however examine simultaneously visual, thermal and acoustic comfort levels. This paper presents work targeted at efficiently studying occupant multi-comfort level using agent-based modeling with the ultimate aim of reducing energy consumption within academic buildings. The proposed model was capable of testing different parameters and variables affecting occupant behavior. Several scenarios were examined and statistical results demonstrated that the presence of different occupant behavior types is deemed necessary for a more realistic overall model, and the absence of windows results in an acoustic satisfaction with a decrease in (HVAC) use.

Improving patient access to a public hospital complex using agent simulation


This paper uses agent based simulation to assess the effect of redesigning the points of access to a major public hospital complex in Chile, where nearly 15,000 people will pass through daily. The study is carried out by simulating pedestrian traffic in order to calculate density maps and service levels in hospital access and ramps. The simulation allows us to evaluate the flow of people and assess the layout performance, by identifying high patient flow areas and congested pedestrian traffic zones. By using this approach, it is possible to suggest changes to the original design and to improve pedestrian flow at hospital access points and ramps. The suggested changes reveal that pedestrian indicators could be improved, which in turn would improve the level of satisfaction of patients, relatives, and hospital personnel. A higher satisfaction level would help to reduce stress linked to hospital facilities and crowded spaces.