Academic articles

Supply Chain Model-Based Analysis of a Cross-Actor Pallet Exchange Platform

Pallets are returnable transport items and of great importance for supply chains. They ensure efficient storage, transport, and handling processes. The pallet cycle, however, is associated with a substantial effort. In addition to administrative costs, extra trips and detours must often be taken by forwarders to retrieve pallets or buy new pallets. In this paper, a fictitious cross-actor pallet exchange platform is analyzed by building a supply chain model.

Managing Agri-Food Supply Chain Risks with Simulation Software

In Ireland, cheese is one of the most exported products. Due to Brexit, it will be most impacted by delays at ports caused by the potential reintroduction of customs or border controls. To predict forthcoming changes and analyze their impact on the cheese supply chain in Ireland, a simulation model was built. To develop the model, the research team used a combination of the agent-based and discrete event modeling approaches along with geographic information system (GIS) included in AnyLogic simulation software.

Logistics Network Analysis Model of E-Grocery Built with a Simulation Tool

The negative effects of traffic, such as air quality problems and road congestion, put a strain on the infrastructure of cities and high-populated areas. A potential measure to reduce these negative effects are grocery home deliveries (e-grocery), which can bundle driving activities and, hence, result in decreased traffic and related emission outputs.

This paper presents an agent-based simulation for logistics network analysis. The model built with a simulation tool assesses the impact of the e-grocery logistics network compared to the stationary one in terms of mileage and different emission outputs.

Simulation as One of Logistics Optimization Techniques Helps Improve E-Grocery Delivery

E-commerce has increased tremendously in recent decades because of improvements in information and telecommunications technology along with changes in social lifestyles. More recently, e-grocery (groceries purchased online) including fresh vegetables and fruit, is gaining importance as the most-efficient delivery system in terms of cost and time.

This paper evaluates the effect of cooperation-based logistics policies, including horizontal cooperation, on service quality among different supermarkets in Pamplona, Spain. For that, the research team applies simulation modeling as a logistics optimization technique.

Simulating an Automated Breakpack System to Improve Warehouse Efficiency and Operations

This case study focuses on the simulation of a soon-to-be-implemented automation system within a Walmart Canada warehouse. This new system's aim is more efficient warehouse operations. Many stock-keeping units (SKUs) cannot be sent to retail stores in full case quantities. They are slow movers and would require individual stores to carry excessive inventory.

Breakpack is the process of breaking cases down to individual eaches (pieces) and combining them into mixed SKU cartons. Automating breakpack offers significant labor and quality savings, that are important to ensure efficient warehouse operations, but also a high degree of complexity.

Tree and Network Product Structure Representations in Semiconductor Supply Chain Desing

Due to various production and market factors, flexibility is a key point in semiconductor manufacturing supply chain design. However, the increased complexity associated with this flexibility must be effectively managed to leverage the benefits that flexibility provides. The product structure is one of the main factors for enabling the desired result. Product structure representations in the supply chain design include linear, tree, and network. In this paper, the researchers explain the problem by a real case merger where risk and opportunities based on the choice of product structure representation in the supply chain design were relevant and no final solution initially was determined.

Supply Chain Simulation Modeling to design the Second-generation Biofuel Transportation Network

The goal of this study is to contribute to commercialization of the second-generation cellulosic biofuels (SGCBs) by reducing its operational cost. A hybrid simulation-based optimization approach is devised to design a cost-effective SGCB supply chain model. The approach includes feedstock yield estimation and location-allocation of feedstock storages between farms and refineries. An agent-based simulation (ABS) implemented in AnyLogic is utilized to estimate operational cost of a SGCB supply chain. The simulation-based optimization with adaptive replication (AR) is devised to find an appropriate SGCB network design in terms of operational cost. The approach is applied to a SGCB transportation network design problem in Southern Great Plains of U.S.

Simulation of Allocation Policies for a Serial Inventory System under Advance Demand Information using Supply Chain Management Software

In this paper, we simulate allocation policies for a two-stage inventory system that receives perfect advance demand information (ADI) from customers belonging to different demand classes using AnyLogic as supply chain management software. Demands for each customer class are generated by independent Poisson processes while the processing times are deterministic. All customers in the same class have the same demand lead time (the difference between the due date and the requested date) and back-ordering costs.

Each stage in the inventory system follows order-base-stock-policies where the replenishment order is issued upon arrival of a customer order. The researchers employ discrete event simulation to obtain output parameters such as inventory costs, fill rates, waiting time, and order allocation times. A numerical analysis is conducted to identify a reasonable policy to use in this type of system.

A Post-Brexit Transportation System Analysis for an Agri-Fresh Produce Supply Chain

The ever-increasing demand for fresh and healthy products initiated an urgency for transportation system analysis and effective planning for Agri-Fresh Produce Supply Chains (AFPSC). However, AFPSC faces many challenges, including product vulnerability to market disruption and limited shelf-life. In case of a no-deal Brexit (i.e., the UK leaving the EU without an agreement), trade between Ireland and the UK will most probably be subjected to customs control. In effect, transportation delays and products deterioration rates will increase.

Based on interviews with an Irish AFPSC forwarder, a simulation model was developed to investigate different systems’ dynamics and operating rules under different delay patterns on the (yet non-existent) inner-Irish border.

Modeling Home Grocery Delivery using Electric Vehicles and Transport Network Analysis Results

This paper presents transportation network analysis results based on data from an agent-based simulation study. The research is aimed at establishing whether a fleet of electric vans with different charging options can match the performance of a diesel fleet. The researchers describe a base model imitating the operations of a real-world retailer using agents. They then introduce electric vehicles and charging hubs into their model. After that, they evaluate how the use of electric vehicles, charging power, and charging hubs influence the retailer’s operations. The simulation experiment suggests that, though they are useful, technological interventions alone are not sufficient to match the performance of a diesel fleet. Hence, reorganization of the urban delivery system is required in order to reduce carbon emissions significantly.